
Form No. 836 R5
ST 2629 10/91

LA-UR-98-4531

Title:

PC DAQ
A Personal Computer Based
Data Acquisition System

Author(s): Gary Hogan

Submitted to:

http://lib-www.lanl.gov/la-pubs/00418755.pdf

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy
under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to
publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. The Los Alamos National Laboratory
requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly
supports academic freedom and a researcher’s right to publish; therefore, the Laboratory as an institution does not endorse the viewpoint of a publication or
guarantee its technical correctness.

HelpManualV4.doc LAUR-98-4531

Page 1 of 86, 1/13/99

 PC DAQ
A Personal Computer Based Data Acquisition System

Gary Hogan

October 29, 1998

General Introduction...4
Objectives..4
Description...4
Running on other computer hardware...5

Copyright..6
Quick Comparison to Q..6

Software Organization...8
General..8
Where is the Data?...10

Data Blocks...10
Histogram Data...11
Test Package...11
Control Data...11

Where is the Code?..12
Setting up Subdirectories...12
CAMAC (FCNA)..12
FileDLL...13
xyPlot...14
Q Test Package..14
Control..14
User Routines..14

How do I make changes?...15
Opening the Project..15
FORTRAN Help Information..15
Opening and Editing a File..15
Compiling and Building..15
Test runs from within FORTRAN..16

Known problems...16
Information Duplication..16
FCNA and UserRoutines...16
Speed...16

DAQ Properties..17
CAMAC..17

Functionality...17
Speed...20

I/O..21

Control..22

Plotting..23
Defining a New Plot...23
Saving a Plot..23
Coping a Plot to another Windows Program...24
Recalling a Plot...24
Multiple Plots on a Page...24

HelpManualV4.doc LAUR-98-4531

Page 2 of 86, 1/13/99

Special Multiple Plots on a Page..24
Graph Title Control...25
Keeping Changes to Graph and Plot Definitions..25
Edit Plot Control...25

Plot Appearance Controls..25
Edit Plot Selection Controls...27

Zoom..28
Printing...28
Update, Reset, and Redraw..28
Text summary...29
Stepping Through Plots..29

Histograms..31
Time...31
1D..31
2D..31
Multiple entries...31
Starting Replay from an Existing HSV File..31
Adding Histograms after the Fact..31
Accessing Histogram Data in ANALnn Programs..32
Changing Histogram Names and Axis Labels..34
Saving Multiple Histograms as a Binary File..34

Data Screen..35

Q Test Package..36
GENERAL CONCEPTS..36

Purpose of the Test Package...36
Overview of Capabilities...36
Connection to Event Numbers...37
Connection to Histogramming..37

User Information..37
Test Descriptor Lines..38
Test Helpful Hints..38

Description of Tests...38
BIT TEST...39
EQUALITY TEST...39
PATTERN TEST..40
GATE TEST..40
INDIRECT GATE TEST REFERENCE..40
INDIRECT BOX TEST REFERENCE..40
AND TEST..41
INCLUSIVE OR TEST..41
EXCLUSIVE OR TEST..41
MAJORITY TEST...42
USER TEST..42
INDIRECT BOX TEST DEFINITION...42
INDIRECT GATE TEST DEFINITION...42

Sample Test Descriptor File..42
PROGRAMMER INFORMATION..43

Subroutines and Functions...43
Test Package Data Architecture..47
Example of How to Use the Test Package...49
Setting up Indirect Gates and Boxes...51

System Requirements...52
Computer...52
System..52
Software...52

HelpManualV4.doc LAUR-98-4531

Page 3 of 86, 1/13/99

CAMAC Interface..52
Tape..53

Format Standards for PC DAQ..54
Format Standards...54
Scripts...54
Retrieving Scripts..55
Run Control [RunControl]..56
Labels [Labels]..63
Histograms [Histograms] and [Ahistograms]...64

Time Series: name /switches...64
1-D and 2_D frequency plots: name /switches..64

Tests [Test]..65
Plots [Plot]...65
Graphs [Graph]..65
Comments [Comment]...65
End of File [EOF]..66

Database..67
Database General..67

Database Example File..67
Database Filenames..68

Database Filename Example...68
Database Keywords..69

RUN..69
MAP..69
Default values are:...71
PEDS...72
GAINS..72
LLIM...72
ULIM...72
EGEOM..73
FILELIST...74
DIPS..75
DRIFT..75

Database Syntax..75
Database Header Files..77

Using the Database in Other Programs...77
Database File Updates...77
Writing Database Files...77

Run Numbers for Output...77
Database Output Subroutines...78

Analysis Hooks...80

Output Format...84
Output Example..84
Header Format...86

HelpManualV4.doc LAUR-98-4531

Page 4 of 86, 1/13/99

 General Introduction

PC DAQ is a general-purpose data acquisition and replay analysis program. It can also be used as a control
shell for Monte Carlo programs. It is being developed at the Los Alamos National Laboratory as part of the
Proton Radiography project.

Program Objectives describes the original purpose for developing this program.

Program Description gives a general description of the program.

Running on other computer hardware is also possible, but not tested.

Objectives

We have several objectives in mind for the program.

1. Replacement for the Q/VAX system. The Q data acquisition system developed at
LAMPF/LANCE is no longer supported in either its software or hardware components. We need a
new DAQ system that is supportable.

2. Software Licensing. Many DAQ/Analysis systems use the CERN library as a source of programs
for analysis and plotting. However, because of the military nature of the Proton Radiography
project, use of the CERN library is not appropriate. We also want to avoid expensive, single
purpose licenses such as LABVIEW® as it is anticipated that this program will be used on many
platforms. PC DAQ provides its own graphics display. Plot analysis can be done either in code or
in EXCEL.

3. Computer Hardware. We want to adopt a computer hardware platform that is powerful and
inexpensive.

4. DAQ Hardware. Moderate amounts of CAMAC hardware have been inherited from the shutdown
of LAMPF. A CAMAC based DAQ system could reuse this capital investment. We also want to
read data in from a variety of sources.

5. Programmer Expertise. Because of the considerable time pressure to develop a new system,
adopting a familiar programming environment would speed up the development process. A system
modeled on the LAMPF Q system would make it easier for users at LANL to learn a new system.

PC DAQ meets these objectives. As a DAQ system, its general design is based on the Q system. It
handles multiple types of triggers and uses the same syntax to define histograms and histogram tests. The
code is developed in-house. The only licenses needed are for the languages Visual Basic 5.0 and DEC
Visual Fortran 5.0. While some reinvention is involved in this procedure, it allows for tighter integration
of the final product and provides for local support. The newer Pentium and Pentium Pro chips meet the
hardware computer needs. Finally, the principle author (Gary Hogan) already has experience writing
Windows/Visual Basic DAQ systems.

Description

PC DAQ is designed to run on a 32-bit Windows® operating system (Windows 95®, Windows NT 4.0®,
or above) running on the INTEL® 80x86 processor line. It is written in a combination of Microsoft Visual
Basic 5.0 (VB EE) and DEC Visual Fortran 5.0. The user interface is written in VB. Most of the analysis
routines are in FORTRAN. For a regular DAQ program reading from CAMAC, only the FORTRAN
analysis routines need to be altered by the user. If data is also to be acquired from Active X Servers, then
the user will need to use the VB analysis routines also. Windows NT is the preferred system as some
features are limited under Windows 95. NT also provides better security and handling of Active X servers.

The current DAQ codes uses a National Instruments AT-GPIB/TNT card and driver (part 776836-01) to
talk to a Kinetics System 3988/G3A CAMAC crate controller. For 16-bit words, transfer speeds of up to
400 Kbytes/sec in DMA mode have been observed with this hardware combination. A knowledgeable

HelpManualV4.doc LAUR-98-4531

Page 5 of 86, 1/13/99

programmer should be able to convert the hardware portion of the code to other hardware within two to
three weeks. Up to 7 CAMAC crates are supported in the current version, though the GPIB interface can
handle more. Other GPIB devices such as scopes and pulsers can also be read into the data stream. Any
Active X server can be used as a source of both data and triggers.

Event triggers can come from a number of sources. The main hardware trigger source is assumed to come
from a LAMPF Event Generator CAMAC module. It is a small modification to use any CAMAC module
that generates a LAM as the trigger module. Twenty-four (24) events are available (1 through 24). Eight
hardware triggers (4 through 12) are provided via NIM input. Events can also be generated in the software
from internal timers, manual buttons, Active X servers, and other by other events.

The program provides both DAQ and replay (disk file input) modes. Extensive software control flags are
provided so that the user can control the flow of data through the program. Flags can be set either in script
command files or interactively. Histogramming, testing, and plotting packages are provided. Histogram
data can be exported to spreadsheets or analyzed in user supplied programs. Plots can be copied and pasted
as bitmap objects into other Windows programs or printed. A run keyed database is provided. The
program can also be remotely controlled over the Internet.

More details can be found in the comparison to Q .

Running on other computer hardware.

In principle, PC DAQ could run on any system hardware running Windows NT® to which Microsoft® has
ported Visual Basic, and that have a Windows version of FORTRAN (such as DEC Alpha’s®); but this
has not been tested. A suitable hardware interface card and driver would also be needed.

HelpManualV4.doc LAUR-98-4531

Page 6 of 86, 1/13/99

Copyright

Copyright 1995-1998 by Gary Hogan and the Board of Regents of the University of California.

Unless otherwise indicated, this software has been authored by an employee or employees of the University
of California, operator of the Los Alamos National Laboratory under Contract No. W-7405-ENG-36 with
the U.S. Department of Energy. The U.S. Government has rights to use, reproduce, and distribute this
software. Neither the Government nor the University makes any warranty, express or implied, or assumes
any liability or responsibility for the use of this software.

Quick Comparison to Q

PC DAQ is loosely based on the Q DAQ system developed at LAMPF. Where the Q system is a set of
independent programs tied together by a global data section, PC DAQ is a set of programs tied together
using the Windows DCOM technology. Both PC DAQ and Q commands can be entered from text
command files (called scripts in PC DAQ). In Q, the user at a command prompt types interactive
commands. PC DAQ interactive commands are entered though a Windows style Graphical User Interface
(GUI). Commands are initiated by clicking the mouse on command buttons, check boxes, drop down lists,
or by typing in text boxes.

Both programs support multiple hardware and software triggered events. Initiation of an event (a trigger) in
hardware starts a user defined set of command codes that acquire data from CAMAC hardware or a Active X
Server. In Q, the DAQ command codes are written in QAL. In PC DAQ, CAMAC command codes are
written in FORTRAN using FCNA or GPIB subroutines. Active X data is read in using VB analysis
programs. In both systems, the user may supply separate analysis routines for each event type to look at
and use the acquired data. In Q, the routines are called PROCnn; in PC DAQ, they are called ANALnn or
vbANALnn, where nn is the event number. The ANALnn analysis routines can generate and return various
error and flow control information. Event enabling can be done either by command scripts or by interactive
controls. Events can be in either may or must process states. In PC DAQ, ANALnn routines can be called
repeated times for a single trigger to enable analysis of a buffer containing multiple events. Event triggers
can come from hardware (CAMAC), internal timers, Active X servers, or other events. Data can be read in
synchronously or asynchronously.

In Q, data logging (“taping”) is done by explicit calls to output routines. In PC DAQ, the actual logging
is automatic, with the user supplying various command flags that can control logging at the run , event ,
trigger , and variable levels. In PC DAQ, output data can be a mix of integer and real data formats. User I/O
to the logging media maybe added in the near future.

Q defines histograms by a text command language in HSU. PC DAQ uses an extended version of these
commands with the same syntax . PC DAQ also has a GUI definition control for histograms. Like the
taping case above, Q uses explicit calls to increment histograms, whereas PC DAQ does incrementing
automatically with command flags to control what is incremented. Q allows only integer values to be
histogrammed; PC DAQ allows both integer and real values for the X-axis. PC DAQ allows non-integer
increment values. In PC DAQ, histogram sizes are limited only by the virtual paging ability of the NT
operating system (the smaller of 2 gigabytes or the available space on your hard drive), though sizes above
a few Mbytes would require adjusting array sizes by an expert in the program. Histograms can use either 4-
byte integer or 8-byte double precision buffers. Future versions may remove the requirement for expert
intervention for big histograms and allow the user to call the histogram increment routines. Both systems
provide 1 and 2 dimensional histograms . PC DAQ also supplies “time” histograms , which are histograms
of a data value as a function of time. Time histograms allow the user to review data values over the last
several events (up to 5000). PC DAQ does not support live dot plots (though it could if there was
demand). Both systems allow for the selective or wholesale saving of histograms to disk. Histograms can
be saved automatically at the end of each run as part of the data stream.

A test package very similar to the Q test package is provided. The test package defines tests that are used to
see which histograms should be incremented. Tests can be defined in scripts or interactively (indirect gates
and boxes). Test result summaries can be printed or copy/pasted into other programs.

HelpManualV4.doc LAUR-98-4531

Page 7 of 86, 1/13/99

Both systems provide plotting packages . In Q, the system is called HPL. In PC DAQ, the plotting
package is based on the xyPlot package defined by Tom Mottershead. The plotting capabilities of the PC
DAQ are rapidly improving. Currently, the user can control colors, line widths, and the visibility of most
parts of a plot. Font control will come with a future version. Plots can be copied as bitmaps to other
programs or printed. Multiple plots can be displayed in a single window. The user has control on how the
plots are placed and/or overlaid. Plot scales can be locked together so that zooming on the control plot
automatically rescales other plots. Plot analysis is currently limited to what the user may supply in
analysis FORTRAN code. For analysis beyond that, histogram data can be exported to spreadsheets.

Both systems have a database utility. In Q, this is the PRM program that accesses a global data section. In
PC DAQ, database values are read from an ASCII file(s) at the beginning of the run. The database is keyed
to the run number, i.e.; the value of a database variable can depend on the run number. It is easy to define
the PRM variables used in Q for legacy Q programs. A variable management system has been defined to
make it easy to add new variables to the database and analysis code.

HelpManualV4.doc LAUR-98-4531

Page 8 of 86, 1/13/99

 Software Organization

General

The program can be divided into two parts. The first part is the VB (Visual Basic) code that makes up the
master control program. It can be run either within the VB development environment or as a stand-alone
program. With the introduction of Version 5, VB code can now be compiled into native code, which
increases the speed over the old interpretive modes in which Basic used to run It can still run slowly if all
the checks are turned on. To prevent a bad speed penalty, disk I/O and computational intensive parts of the
code are written in FORTRAN. The FORTRAN code is the second part of the program. Using
FORTRAN for the analysis code also allows the migration of old code to the new platform. For the best
speed, the disk I/O is done using System I/O calls rather than FORTRAN I/O calls. The FORTRAN is
broken up into a number of Dynamic Link Libraries (DLL). A DLL is a library of routines that is loaded
and linked to the main program only at run time. This means that a DLL can be compiled and linked
separately without having to relink the entire program. The DLLs in PC DAQ are:

1.
FCNA: This contains the code that talks to the GPIB drivers. It defines the FCNA
commands. If a different interface were used, most of the communication changes would
be done here.

2. FileDLL: This contains the code that does the disk I/O and histogram management.

3.

Q Test Package: This contains Q test package code. Note that this code is a complete
rewrite of the original package. Only the subroutine names are the same. From the user’s
viewpoint, the only change is that integer arguments to the subroutines are 4-byte
integers instead of 2-byte integers.

4.

xyPlot: This is a Windows® implementation of Mottershead’s xyPlot subroutines.
While generally following the original xyPlot specification, it has numerous additions
and changes. Plotting is done using Windows’ hardware independent graphics
primitives, so plots can be done to the screen, printer, or other device with very little
device dependent code. Currently, xyPlot is limited to only the single, built-in font.
This will be upgraded in the future. Other features maybe added later.

5.
User Routines: This contains the user supplied analysis routines (ANALnn). This is the
only DLL that the user should need to alter. Shell versions of the user routines are
supplied.

6.
Database: This contains the database I/O codes. The database is an ASCII orientated
database keyed by run number.

7. Utilities: This contains various string functions converted from Basic.

8.
Scope Routines: If you are talking to the Scope Monitor program, you will need this
DLL

9.

GPIB. We use Version 1.3 of the National Instruments GPIB DLL. The program does
not work with Version 1. 4 for unknown reasons. A special, fake, version of the GPIB
routines is provided in order to generate the .lib file the compiler needs to link to the
DLL.

The working version of a DLL must be in the …\system32 subdirectory of the Windows directory. If you
create a new DLL, you must copy the new version of the DLL to the system directory. If you have multiple
versions of a DLL on the same machine, you need to exercise care that the version of the DLL in the
system directory matches your task.

With this release of PC DAQ, the VB code is also divided up. This was done to enable remote control of
the program over the Internet using Windows' DCOM technology. The pieces are:

HelpManualV4.doc LAUR-98-4531

Page 9 of 86, 1/13/99

1. PCDAQ.EXE: This is the GUI interface that the user sees and interacts. It has essentially all of the
forms in the program. All users, whether remote or local, use this same set of forms. Thus, you
have the same control over the program where every you are.

2. DAQControl.exe: This Active X server has the main guts of the program. The user analysis
routines are called from this program. It also currently contains the VB user routines.

3. PCSystemInfo.exe: This Active X server is a utility program used to get information about the
computer system and user.

It is a feature of VB that it can call FORTRAN programs that are in DLLs, but FORTRAN programs
cannot call VB. Also, while one DLL can call routines in another DLL, two DLLs cannot both call each
other, i.e., only one DLL of a pair of DLLs can be dependent on the other. This leads to a hierarchical
structure for the program.

PC DAQ GUI
Forms

xyPlot

System
Graphics

Utilities
DAQ Control

Active X Server

Figure 1, GUI Layer

HelpManualV4.doc LAUR-98-4531

Page 10 of 86, 1/13/99

DAQ Control

UserRoutines

FCNA

GPIB Drivers
QTestPackage System I/O

FileDLL

Database

Scope Routines

Utilities

Figure 2, DAQ Active X Server

One of the requirements for calling DLL routines is that the calling program has to be given a description of
the subprogram. This includes the subprogram name used by the user in writing code, the name used by
the linker, and a detailed description of the argument list. This is done with DECLARE statements in VB
and INTERFACE statements within FORTRAN. You will find files (usually with ‘IMPORT’ included in
the file name) for the DLL being used. In general, I have put only the subprogram definitions that I am
using within the INTERFACE/DECLARE files, so they are not complete. Making them complete is a low
priority project. My FortranToBasic utility program can be used to convert a FORTRAN Interface block
into VB Declare statements.

DEC’s FORTRAN is a FORTRAN 90 compliant compiler with support for FORTRAN 77. The
FORTRAN code is written in F77 format (72 columns, column 6 as continuation, etc.). Because it is
sometimes the only way to do thing, or just much easier, some of the code uses FORTRAN 90 syntax. To
make communication with VB possible, type structure definitions must always have the SEQUENCE
command. The compiler option for Structure Element Alignment must be set to 2. Almost all the code
uses IMPLICIT NONE (FORTRAN) or OPTION EXPLICIT (VB) to force type declarations for all
variables.

 Where is the Data?

Another feature of a mixed language environment combining VB and FORTRAN is the lack of common
data storage. There is currently no way for VB to get to a FORTRAN common block directly. Thus a
decision must be made about where data is to be stored, VB or FORTRAN. Different decisions were made
for different types of variables. In some cases, data is duplicated.

Data Blocks

Data blocks are arrays of numbers used for I/O buffers, data results, and histogram input. Only three blocks
are currently supported. They are the “System Blocks.” The first block is a large 16-bit integer array
[IntegerData()]. The second is a 32-bit single precision real array [SingleData()]. The third is a 32-bit
integer array [LongData()]. All I/O is done from these blocks. Currently, histogramming can only be done
from these arrays. The sizes of these arrays are defined by the parameters NumberOfIntegers,
NumberOfSingles, and NumberOfLongs. As with many of the parameters in the program, these exist in

HelpManualV4.doc LAUR-98-4531

Page 11 of 86, 1/13/99

both the VB and FORTRAN code. All three arrays must have the same size. The data arrays themselves
exist only in the FORTRAN code. VB communicates to these arrays through subroutine calls.

The array common blocks are defined in PCDAQBuffers.inc. The include file EGEOM.FI divides up the
system blocks into a variety of arrays and scalars if you are using to the variable management tool. That
database code allows you to initialize these blocks.

There is a NULL data value defined for each system block (a large negative number). At the beginning of
every run (or batch of runs if in auto restart or replay batch mode), the system blocks are cleared to the
NULL value before any user routines are called. NULL data is not displayed or histogrammed. It is written
to “tape” if present. Because the NULL data values have a large absolute value, using variables without
first defining their values can easily lead to “Overflow” errors. If you start getting such errors, start looking
for uninitialized variable usage.

The current contents of the data blocks can be viewed using the Data Screen . Click on Data Screen under
the View Menu. The labels that you see with the values are defined in a LABEL script. For those labels
with associated time histograms , the past 5000 values can be viewed if the Data Screen is in histogram
mode. Because this screen is a convenient way of looking at the data, users are encouraged to equivalence
their working variables to one of the three data arrays and define a LABEL for each variable.

The user with the LABEL script describes the structure of the System Block. This script tells the program
how the locations in the blocks are to be associated with events and how they should be displayed. It also
flags which variables are to be logged to disk. The CAMAC I/O buffer definitions are given by the LABEL
script commands.

Histogram Data

Histogram data comes in two parts. The first is the histogram definition . In the VB code, definitions are
stored as histogram class objects within a collection. In FORTRAN, definitions are contained in type
structures HistInfoLabels and HistInfo. These structures are used to define the arrays HistogramNames and
HistogramList. The first contains the name strings (title, etc.), the second all other histogram information.
This information is duplicated in VB and FORTRAN codes. The only difference is that the names are
truncated to 40 characters in FORTRAN. In FORTRAN, the arrays are in PCDAQBuffers.inc.

The second part of the histogram data is the actual frequency data. For 1D and 2D plots, the data is stored
in either the 32-bit integer array HistBuffer or the 64-bit double precision array HistDoubleBuffer. For time
histograms, the information is in TimeArray, and TimeHist. These arrays only exist in the FORTRAN
code. VB communicates to these arrays through subroutine calls.

All of the above is subject to change. I am considering a major change in the near future where the
histograms (definition and data) become C++ objects. Then data array space would only be allocated on an
as needed basis. The number and size of histograms would be limited only by the (virtual) memory space
of the machine. Communication to the histogram objects would be by subroutine call for both FORTRAN
and VB.

Test Package

Test packa ge data is all stored in the FORTRAN code. VB gets at that data via subroutine calls. Note that
internally, the test package data structures are completely different from the Q version. VB organizes the test
definitions as a collection of class objects.

Control Data

Most control data resides exclusively in the VB code. Most global variables are defined in
PCDAQGlobal.bas. Only those flags that must be available to the FORTRAN code have been duplicated.
Most numeric control variables have a list of defined values encoded into parameters. For example, the null
data values have the parameters NullDataI2, NullDataR4, etc., defined. These parameters are often
duplicated in both the VB and FORTRAN code.

HelpManualV4.doc LAUR-98-4531

Page 12 of 86, 1/13/99

Also among the duplicated information is the numeric portion of the LABEL definitions. The string part of
the Label definition is not duplicated. As with the histogram definitions above, the label definitions are
coded as class objects. If you are using the variable management tool, some of the label information
(including the name and comment) can be found in the EGEOM database structure (EXPER_GEOM.FOR).

 Where is the Code?

Setting up Subdirectories

The code is located in seven subdirectories. There is one sub-directory for each FORTRAN DLL and one
for the VB code. Independent utilities such as RemoveFiles are in other directories. It is assumed that you
have set up your code so that all the subdirectories are under the same master directory. The FORTRAN
subdirectories are ..\FCNA, ..\FileDLL, ..\UserRoutines, ..\xyPlot, ..\Database, and ..\QTestPackage.
Microsoft calls each of these DLLs a “project.” The project definition file has the extension “.dsw”. Each
directory contains the source code and project definition files for that DLL. Changing these names is going
to cause you more trouble than its is worth, so don’t do it. As Figure 1 shows, these DLLs call other
DLLs. Those DLLs that call other DLLs have a reference to the appropriate .LIB file in their Linker control
line. These .LIB entries must point to the actual location of the .LIB file for that DLL. They do this by
using the double dot (..) notation in the path portion of the file name. Thus the release version of the
FileDLL linker command lists “..\QTestPackage\Release\QTestPackage.lib” as an input file. The debug
version links to “..\QTestPackage\Debug\QTestPackage.lib”.

Below each DLL source directory are subdirectories called ..\Release and ..\Debug. These subdirectories are
created when you compile and link the DLL. Each sub-directory contains the object modules and linked
DLL for the configuration selected. Two configurations are possible, Debug and Release. The debug
version contains information and checks used by the debugger for annotating code. The release version does
not have this and runs faster. When you change a DLL, you need to copy the updated .DLL file to the
..\system32 directory.

The VB code is currently located in ..\VBCode. Along with the VB code and executable, this is the default
directory for script files. Database files are usually under the ..\DatabaseFiles sub-directory. I find it
convenient to also defined a ..\OutputFiles directory for data and histogram files. Help source files are in the
..\PCDAQHelp sub-directory.

 CAMAC (FCNA)

A number of routines have been defined for use by the user to talk to CAMAC. Along with carrying out the
assigned CAMAC function, the FCNA commands below also keep track of the state of the GPIB crate
controller state settings. If instead of using the FCNA subroutines, you use the GPIB commands IBWRTF
and IBRDF, be sure you also update the crate controller state variables. Such code should only be written
by experts. The routines in FCNA are self-contained and can be used by other programs that want to talk to
CAMAC.

These routines are in the FCNA DLL. Arguments are 4-byte integers (Integer*4) unless noted otherwise.

Call FCNA (F, C, N, A, Lun, Wrt24, Value, Q, X, Err()) :
F : CAMAC function code
C : CAMAC crate
N : Slot
A : Address
LUN : Undefined. Kept for compatibility.
Wrt24 : = -1 (true), use 24 bit write, otherwise 16 bit write.
 Reads are always 24 bits.
Value : Value to read/write to CAMAC
Q : Q returned by module
X : X returned by module
Err(2) : Err(1) = 1 => Success, otherwise failure.

HelpManualV4.doc LAUR-98-4531

Page 13 of 86, 1/13/99

 Note that the sign of this error flag is opposite
 of what is used in the rest of the programs.
 Err(2) : Undefined.

ReturnCode = ControlFCNA (F,C,N,A,Q,X) :

Issue CAMAC control function (F = 8 → 15, 24 → 31)
F : CAMAC function code
C : CAMAC crate
N : Slot
A : Address
Value : Value to read/write to CAMAC
Q : Q returned by module
X : X returned by module

A return code of -1 is success. The parameter “Success” is defined in CamacCommon.inc.

ReturnCode = ReadFCNA (F,C,N,A, Nbits, Value, Q,X) :
Do a CAMAC read.
F : CAMAC function code
C : CAMAC crate
N : Slot
A : Address
Nbits = 8, 16, or 24.
Value : Value to read from CAMAC
Q : Q returned by module
X : X returned by module

A return code of -1 is success. The parameter “Success” is defined in CamacCommon.inc.

ReturnCode = WriteFCNA (F,C,N,A, Nbits, Value, Q,X) :
Do a CAMAC write.
F : CAMAC function code
C : CAMAC crate
N : Slot
A : Address
Nbits = 8, 16, or 24.
Value : Value to write to CAMAC
Q : Q returned by module
X : X returned by module

A return code of -1 is success. The parameter “Success” is defined in CamacCommon.inc.

INTEGER*4 function IBWRTF (ud, buf, cnt)
INTEGER*4 ud ! GPIB device identifier
Integer*1 buf(*) ! Output buffer
Integer*4 cnt ! Byte count

INTEGER*4 function IBRDF (ud, buf, cnt)
INTEGER*4 ud ! GPIB device identifier
Integer*1 buf(*) ! Output buffer
Integer*4 cnt ! Byte count

At some future time, I will provide subroutines for more complicated CAMAC operations such as a DMA
read of a LeCroy® FERA Memory Module.

FileDLL

Most of the routines in FileDLL are used for (a) disk I/O, (b) VB-FORTRAN information passing, and (c)
histogram management. The user would normally only be interested in the last item. These routines will

HelpManualV4.doc LAUR-98-4531

Page 14 of 86, 1/13/99

be discussed later in the section on histograms and examples. The first two topics will be left for a future
report.

xyPlot

At this time, there is no reason for a user to be calling these routines. Hypothetically, if a provision was
added for drawing an event display, then access to these routines would be useful. There are no plans at this
time to provide hooks for such a feature (though it would not be a bad idea). For the moment, anyone
interested in using these routines should look at Mottershead’s documentation on xyPlot. They can be
used from any Windows programming environment (VB, C++, FORTRAN, VBA [i.e., Excel, Access]).
Updating the existing documentation of xyPlot to include my changes and extensions is a low priority
project awaiting an expression of interest.

Q Test Package

This is an implementation of the Q Test Package as defined in MP-1-3412-3, March 1986. Because I
recoded from scratch, I have made some changes. The internal structure of the database is completely
different, but the user should not see this. The major change for the user is that all arguments in the calls
are Integer*4, not Integer*2. Also, the call to TSTEXE (the test call) as been upgraded so that the data
array can be any type (I*2, I*4, R*4, or R*8). Indirect gates and boxes can be defined using the mouse on
histograms. The test database can be dumped in binary form (for replay) or text suitable to be read into
Excel. Test setups can be saved to scripts to save the indirect gate/box settings for later use.

Note that unlike data logging and histogramming, tests are NOT done automatically. The user must
include calls to TSTEXE in their code to make the tests happen. Test definition formats can be found in
the section on Scripts . Otherwise, I note that the two important calls are:

CALL TSCLFB (BlockNumber, IERR) ! Clear test block flags

CALL TSTEXE (BlockNumber, DataArray, IERR) ! Do block tests

Note that the block number here has nothing to do with the system data block number used for defining
labels and histograms. It refers only to the test block number defined in the test script.

Control

Program flow control is all done in the VB code. FORTRAN routines are only called to carry out specific
functions. The FORTRAN routines effect the flow of the data only to the extent that they can return certain
exception control values. The VB master program then reacts to these exceptions. The exceptions that the
user is most interested in are those generated by the ANALnn routines. These exceptions can, among other
things, cause (a) the routine to be called again for the same trigger, (b) abort data logging or
histogramming, or (c) abort the entire run. This is discussed in detail in the analysis section .

A complete discussion about how the VB code is organized is beyond the scope of this report. I discuss
here only the subject of class usage. The VB code as many class structures. Some define objects, other
define collections of objects. An example is the PLOT class. This object contains the information and code
to display a single histogram. This is where line type and font information is stored. The GRAPH class is
part of the NOTEPAD MDI child form. A GRAPH is a collection of PLOTs. The GRAPH class
information contains the page title and plot list. Other classes that are in the VB code are part of canned
utilities routines. Labels, tests, and histograms are classes.

User Routines

Most user changes will be to the ANALnn routines. These are part of UserRoutines.dll. Each routine is a
function. The argument of the function tells the routine which of several different operations related to an
event type should be performed. The most common operations are to read CAMAC and to analyze data.
Thus, the equivalent of both Q ’s QAL code and PROCnn code are in the same routine in PC DAQ.
Details of the operations are given in the section on analysis.

HelpManualV4.doc LAUR-98-4531

Page 15 of 86, 1/13/99

The return value of the ANALnn function tells the control program what it should do next. The commands
range from “proceed normally” to “stop all data acquisition.” The return value is a bit-mask, so various
commands can be combined. Again, details of the defined return commands are given in the section on
analysis.

Shell versions of the ANALnn programs are supplied. The shells contain INCLUDE statements for most of
the system common blocks to which the user needs access. They also provide a code structure to handle
the various operations the program is requested to handle. If you are not familiar with the SELECT CASE
programming structure, I suggest looking it up in the extensive on-line help provided with FORTRAN as
an exercise for the student.

One of the INCLUDE file is AnalysisCommon.INC. The first part of this include file contains vital
information such as the location for the event trigger module and run number. Users are on their honor not
to mess with this information or the control parameters in other INCLUDE files. Other than that, the user
may use this INCLUDE file to defined such things as the slot and crate locations of CAMAC modules,
variable eq uivalencies to the system blocks , and other information that should be shared by several
ANALnn programs. The variable management tool is useful here. The user is free to add other routines and
include files to this DLL. Note that Microsoft prefers .fi as the extension for FORTRAN include files rather
than .inc. Either will work, but .fi files are given a nicer editing environment.

How do I make changes?

The examples below assume you are changing code in UserRoutines.dll. Similar comments apply if you
change other DLLs. And remember, when in doubt, read the manual. The complete FORTRAN manual
plus much, much more is available in the on-line help files. FORTRAN PowerStation automatically
creates, maintains, and uses MAKE files for fast compilation of code.

Opening the Project

FORTRAN code is edited and compiled by the DEC Visual Fortran® program. Start this program. You
pick a project to open from the File menu. Previously opened projects are listed at the bottom of this
menu. If UserRoutines is not listed, use the OPEN WORKSPACE menu command to find and open
PCDAQ.dsw.

FORTRAN Help Information

On the left side of the screen is a area which usually displays one of three lists. You select which list by
clicking the tab at the bottom of this area. Class View is usually empty. File View lists all the files in the
project. InfoView lists the current set of on-line books. Other book sets can be viewed by choosing a
different set from the drop down list in the tool bar. If you get a chance, browse these books. Its all there,
including examples. You can also access these help books for the standard Help menu command.

Opening and Editing a File

From the file view on left side of the screen, double click the file you want and it will be opened for you. If
all you see is “UserRoutines Files,” double click on this to expand the list. Include files can be found by
expanding the Dependencies heading at the bottom of the list. Standard Windows text editing commands
are used to edit files.

Compiling and Building.

Directly under the Build menu command are the Compile xxx.for and Build UserRoutines.dll commands.
The first command saves, then compiles, the routine in the currently active text window. The Build
command saves and compiles are files that have changed since the last build. It then builds a new DLL file.
To use this file, you need to move the created DLL file to the ..\system32 directory.

HelpManualV4.doc LAUR-98-4531

Page 16 of 86, 1/13/99

Test runs from within FORTRAN.

To run the program without leaving the editing environment, select the Debug or Execute command under
the Build menu. If you have not already defined the main executable, it will ask for the file. Give the
complete path and filename for the location of PCDAQ.EXE, including the extension. If you mess up the
name, use the menu path BUILD / Settings… / Debug to get to the text box “Executable for debug
sessions” and put in the correct information. If you are running in Debug mode, it will complain that there
is no debug information for PCDAQ.EXE. That is okay. The debugger will still work on the DLL code
you are testing. I find the debugger to be quite nice and I encourage you to use it. Remember, each time
you change the program, the new DLL needs to be copied to the ..\system32 directory.

Known problems

Information Duplication

Several types of information, such as label and histogram definitions, are stored in both the VB code and
FORTRAN code. This can lead to synchronization problems, particularly if the user fools with forbidden
items such as the histogram definitions. In general, control and definition changes should only be made
from the user interface, not in analysis code. Some of these temptations will be removed in future versions.
All I can ask is that you be careful.

FCNA and UserRoutines

The optimizer in FORTRAN has some problems working with the GPIB DLL. FCNA and UserRoutines
will bomb in DAQ mode if the code is optimized. UserRoutines does seem to work in replay mode if
optimized. So some care needs to used in selecting the compilation conditions of these DLLs depending on
the mode you are running under. The code does not work with Version 1.4 of the National Instruments
GPIB DLL. Use 1.3 or earlier.

Speed

Because the program flow control is in VB, it can sometimes get bogged down in a high rate environment.
For the Proton Radiography experiment, we use a feature in the analysis that allows an analysis routine to
be repeatedly called to step through the sub-triggers stored in a FERA Memory buffer. Normally, control
would be returned to the VB program after each sub-triggers is processed. This allows the control program
to interrupt processing in favor of new data (may process). In replay mode, this feature is not needed and
returning to the VB program after each sub-trigger slows down analysis. Therefore, techniques have been
developed for calling directly between ANALnn routines. Talk to me if you need these methods. In the
Proton Radiography experiments, the database command EGEOM SPEEDFLAG has been defined to
toggle between these modes.

HelpManualV4.doc LAUR-98-4531

Page 17 of 86, 1/13/99

DAQ Properties

CAMAC

Functionality

The preferred method for the user to talk to CAMAC is to use the FCNA commands provided in the
FCNA DLL. These routines handle both the GPIB command codes and the crate controller commands.
This is usually all the user needs to know.

If you need to talk to the crate controller, a number of canned programs exist in FCNA to perform common
functions. You would probably use these only if you were writing a stand-alone program, say a module test
program. Normal order of use would be:

1. Setup CAMAC with SetupCamac function.

2. Do a bunch of FCNAs with FCNA subroutine.

3. Close out with CloseCamac subroutine.

If you are writing a stand-alone program (assuming it is in FORTRAN), you need to:

Include the FCNA.LIB file in your project linker input list.

Include CamacCommon.inc and FCNAImport.inc in your main program. Either include the path
to CamacCommon.inc in the INCLUDE statement or add the path under / Build / Settings… /
FORTRAN / Preprocessor / INCLUDE and Use Paths.

After the above includes, add the line:
!MS$attributes DLLIMPORT, Alias:'_CAMACCOMMON' :: CamacCommon

Make sure the compiler option for Structure Element Alignment is set to 2.

Make sure the compiler option for optimization is OFF

SUBROUTINES:

ByteBreak (InputNumber, Buffer()[I*1]) : Breaks out the lower three bytes (by value) of InputNumber
and stores them in the byte array Buffer. Order is high, mid, low.

CloseCamac : Takes CAMAC controller off-line from GPIB bus and releases GPIB software from
memory.

FCNA (F, C, N, A, Lun, Wrt24, Value, Q, X, Err()) : (See also the ReadFCNA, WriteFCNA, and
ControlFCNA functions below)

F : CAMAC function code
C : CAMAC crate number (User assigned number set by SetupCamac)
N : Slot
A : Address
LUN : Undefined. Kept for compatibility.
Wrt24 : = -1 (true), use 24 bit write, otherwise 16 bit write.
 Reads are always 24 bits.
Value : Value to read/write to CAMAC
Q : Q returned by module
X : X returned by module
Err(2) : Err(1) = 1 => Success, otherwise failure.
 Note that the sign of this error flag is opposite
 of what is used in the rest of the programs.
 Err(2) : Undefined.

HelpManualV4.doc LAUR-98-4531

Page 18 of 86, 1/13/99

Call FCNAErrMess (Num, Message) . Converts an error return code from a number to a text string.
Num = Return Code. Note, From FCNA itself, call with -NUM.
Message = Output string with text of error

 Other Functions:

ByteMerge (Buffer()[I*1]) : Returns an I*4 number made up of first three bytes in Buffer (a byte array).
Order is high, mid, low.

CAMAC FUNCTIONS:

The following functions are used to talk to the Kinetic System 3988/G3A GPIB CAMAC Crate
Controller. They return a ReturnCode, values of which can be found in CamacCommon.INC. Success is a
value of -1.

Common Arguments are:

CrateNumber: User assigned crate number for controller. Defined by call to SetupCamac. When you
call SetupCamac, you supply an array of GPIB hardware addresses. Crate #1 is the first entry in
the hardware address array, crate #2 is the second array entry, etc.

Value: An I*4 value that is written or read from controller or module register.

Nbits: Number of bits to transfer. Values are 8, 16, or 24.

Functions:

CheckSwitch (CrateNumber) : Success means manual switch on controller is On-line.

ClearInhibit (CrateNumber) : Clear inhibit issued by crate controller.

ClearUseQX (CrateNumber) : Turn off the return of the status byte (Q and X) [SBE].

ControlFCNA (F,C,N,A,Q,X) : Issue CAMAC control function (F=8->15,24->31)

ReadControlRegister (CrateNumber, Value) : Read 3988 control register

ReadFCNA (F,C,N,A, Nbits, Value, Q,X) : Do a CAMAC read.

ReadLAMRequest (CrateNumber, Value) : Read LAM request register in controller.

ReadTransferCount (CrateNumber, Value) : Read Transfer Count register in controller.

SendC (CrateNumber) : Have controller issue a C clear.

SendZ (CrateNumber) : Have controller issue a Z clear.

Set16Bits (CrateNumber) : Set Controller to 16 bit transfers.

Set24Bits (CrateNumber) : Set Controller to 24 bit transfers.

Set8Bits (CrateNumber) : Set Controller to 8 bit transfers.

SetAddressScan (CrateNumber) : Set controller to Address Scan mode.

SetInhibit (CrateNumber) : Set inhibit issued by crate controller.

SetQRepeatScan (CrateNumber) : Set controller to Q-Repeat Scan mode.

SetQStopScan (CrateNumber) : Set controller to Q-Stop Scan mode.

SetSingleTransfer (CrateNumber) : Set controller to Single Transfer mode.

SetupCamac (NumberOfCrates, HardwareAddressList(), IssueCZ) : Sets up GPIB interface and
CAMAC controller.

NumberOfCrates : Number of entries in list of Hardware addresses. Maximum size is defined by
parameter NumOfCrates in CamacCommon.inc.

HelpManualV4.doc LAUR-98-4531

Page 19 of 86, 1/13/99

HardwareAddressList() : List of GPIB hardware primary addresses. Controller addressed by entry 1
becomes Crate #1. Empty entries are allowed. Later attempts to address an empty entry will
generate an error code.

IssueCZ. If non-zero, C and Z are issued as part of the setup.
Program does the following as part of its setup:

Bring in GPIB-32.DLL. Routines that talk to GPIB board.
Get software addresses for controllers.
Issue GPIB clear to controllers.
Set the controller(s) to default values:

Inhibit cleared.
24 bit transfers.
Q and X (status byte) not returned.
Single transfer mode.

Check that controller(s) have their manual switch on-line.
Disable all LAMs in crate(s).
Do a Z if IssueCZ non-zero
Do a C if IssueCZ non-zero
Clear Transfer count register.
Clear SRQ enables.
Set control variables in CamacCommon.inc.

If an error occurs during setup, the GPIB interface is shutdown and the DLL released.

SetUseQX (CrateNumber) : Turn on the return of the status byte (Q and X) [SBE].

WriteControlRegister (CrateNumber, Value) : Write to 3988 control register

WriteFCNA (F,C,N,A, Nbits, Value, Q,X) : Do a CAMAC write.

WriteLAMMask (CrateNumber, Value) : Write to LAM Disable Mask.

WriteSRQMask (CrateNumber, Value) : Write to SRQ (GPIB Service Request) Enable Mask.

WriteTransferCount (CrateNumber, Value) : Write to Transfer Count register in controller.

GPIB ROUTINES

These routines talk to the GPIB software. They are not for the causal user. See National Instrument’s
documentation for 488 functions for details of the ibxxx functions. If you use these functions to directly
change the state of the crate controller, be sure you also change the value of the appropriate state variable in
CamacCommon.inc. Many useful parameters for these routines are in GPIBConstants.inc.

I*4 Function LoadDll (dummy) : Loads GPIB-32.DLL. Success = -1 return value.

Subroutine FreeDll : Frees GPIB-32.DLL.

I*4 Function IBDEVF (...) : Calls ibdev function.

I*4 Function IBCLRF (...) : Calls ibclr function.

I*4 Function IBONLF (...) : Calls ibonl function.

I*4 Function IBWRTF (...) : Calls ibwrt function.

I*4 Function IBRDF (...) : Calls ibrd function.

I*4 Function GETIBERR (...) : Returns iberr value.

I*4 Function GETIBSTA (...) : Returns ibsta value.

I*4 Function GETIBCNTL (...) : Returns ibcntl value.

You can also talk to the crate controller using GPIB commands (ex., IBWRTF).

HelpManualV4.doc LAUR-98-4531

Page 20 of 86, 1/13/99

Speed

Both bench test and actual experimental floor tests have been done on the speed of the hardware. We use a
PC-clone computer talking to a GPIB CAMAC controller. The computer is a 166MHz Pentium PC
running Windows NT 3.51. The GPIB interface is a National Instruments GPIB/AT-TNT board. The
CAMAC controller is a Kinetics System 3988/G3A GPIB controller with DMA capabilities. The bench
test program is written in FORTRAN using the FCNA DLL mentioned above to communicate with the
National Instruments device software. A LeCroy 4302 FERA memory module is used as the data source.
Time is measured using the SECNDS library function, which is good to 0.01 seconds.

Data is readout using 16-bit (2-byte) CAMAC reads. Rates are measured for various numbers of bytes in
the memory. For a given number of bytes, the memory is readout 100 times and the average is reported.
The memory is readout in LIFO (Last In, First Out) mode. The data comes out of the controller as a byte
stream. For microchip based computers, the byte order is swapped compared to the internal byte order for
16-bit integers. Most of the measurements were made with code in place to correct the byte order. At the
highest rate, a measurement was also made with the byte swapping turned off. Results and straight line fits
are shown below:

Time For DMA Memory Read

y = 2.16E-06x + 2.30E-03

y = 2.08E-06x + 2.32E-03

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0 5000 10000 15000 20000 25000 30000 35000

Bytes

T
im

e
 (

s
)

With Byte Swaping

No Byte Swapping

Figure 3, DMA Timing

There is an 2.3 millisecond overhead time in setting up the DMA transfer. DMA transfer rates are then 463
Kbytes/s to 480 Kbytes/s, depending on how the byte swapping is handled. The setup time is close to
minimal. Tests were also done on a 66MHz 486DX2. There the results were 12 milliseconds setup time
and 380 Kbytes/s to 470 Kbytes/s DMA speeds. So the DMA speed is almost independent of processor
speed while the setup time scales with the processor speed. Note that CAMAC’s maximum DMA speed is
2Mbytes/s in 16-bit mode.

The Pentium computers have been used in experiments at Brookhaven with the full PC DAQ software.
When you add in time to write data to disk and overhead from the PC DAQ program, the effective speed
drops to around 330 Kbytes/s. Taping can reduce this by another 10%. We may be able to get some of the
loss due to taping back by having the backups done by another machine over a fast (100BaseT) network
connection.

The setup time of 2.3 milliseconds comes from the number of GPIB command cycles it takes to set up the
DMA transfer. Each GPIB command takes about 0.4 milliseconds to complete. For comparison, a single
word read takes 2 GPIB command cycles, and so takes 0.8 milliseconds to make. For slower machines,

HelpManualV4.doc LAUR-98-4531

Page 21 of 86, 1/13/99

you should read the data out only when the memory is close to full, otherwise you will be dominated by
the setup times. Reading out CAMAC modules in a non-DMA mode is a slow process. The KS controller
does have a readout mode (Address Scan) that can read several non-DMA modules using a single GPIB
command cycle. If enough modules are read, a speed increase of a factor of 10 over the non-DMA speed is
possible.

Reading out data within the LAMPF 8 ms gap between macro pulses is not possible without overlapping
the next pulse(s). So when running at LAMPF, you need to set up the data accumulation to take in several
beam bursts for each readout cycle to reduce the dead time. You can also try flipping between two parallel
memory modules.

I/O

CAMAC I/O should be done to the integer system data blocks. 16-bit data goes into IntegerData() and 24-
bit data goes into LongData(). The location for an event’s I/O buffer is defined by a Label command with
the name having the specific form: CAMACnn, where nn it the event number. Use a leading zero for single
digit event numbers. See the section on label script formats for details on available options. The label
command should define the maximum length buffer needed and whether the buffer should be automatically
logged. Automatic logging can be overridden on a trigger by trigger basis using the ANALnn return codes.
Data is placed in the I/O buffer by user supplied FORTRAN code in the appropriate ANALnn program.
ANALnn does a CAMAC read when it is called with the operations argument set to “uGetTrigger.” The
location of the I/O buffer is available to the user via the array IntegerEventList (EventNumber) or
LongEventList (EventNumber). This is the index of the first word of the buffer in the appropriate system
block. For example, to set the third word of event 5 to the value 10, use:

IntegerData (IntegerEventList (Anal05Ev)+2) = 10

Once all the data is read, set the counter IntegerEventSize (EventNumber) [or LongEventSize] to the
number of words used. The program will use this counter to decide how much of the event buffer to write
to disk. The user is responsible for insuring that the end of the buffer is not overrun.

I/O buffers are best-defined using the variable management tool.

In principle, you can use the real system block as the I/O buffer, but that is probably bad programming
practice.

HelpManualV4.doc LAUR-98-4531

Page 22 of 86, 1/13/99

Control

This section has not been written yet.

There are separate control forms for:

1. Run Setup Mode

2. Data Viewing

3. Graph Definition

4. Plot Definition

5. Event Definition

6. Histogram Saves

7. Replay Data Viewing

8. Script Execution

9. Test Package Definition

10. Histogram Definition

11. Label Definition

12. Test Results Viewing

13. GPIB, CAMAC, and Database Interface

14. And on and on…

HelpManualV4.doc LAUR-98-4531

Page 23 of 86, 1/13/99

Plotting

A distinction needs to be made between histograms and plots. A histogram is a set of data, usually the
frequency that some value has occurred. A plot is a graphical display of the data contained within a
histogram. Several different plots can be defined for one histogram data set. A collection of plots on a single
page or window is called a graph.

Defining a New Plot

To define a new plot, you must first open a window to display the plot. To open the window, use the
menu combination File / New Plot. This will open a window which will have the text “[GRAPH]” in it.
You now need to pick which histogram to display in this window. Use the menu combination Plot /
Define... to bring up the Graph Definition form. This form has three large boxes on it and several controls.
The big box across the top is where you may enter an optional page title. The list box on the left contains
a list of all the currently defined histograms. The list on the right is the list of histograms that will be
displayed on the graph page you are defining (the plot collection). From the left list, pick one histogram by
clicking on the name with your mouse. The entry for each histogram contains 3 numbers and a name. The
numbers are the event number associated with the histogram, the system block for the histogram (1=I*2,
2=R*4, 3=I*4), and the histogram type (time=0, 1D=1, 2D=2). Together with the name, these four pieces
of information should uniquely identify a histogram. Once you pick a histogram, click the “Add →”
button. The histogram will appear in the right hand list. If you picked the wrong histogram, you can
remove it by selecting it in the right hand list and clicking “← Remove.” Once you have selected the
correct histogram, click on “OK” at the bottom of the form. The program will then draw the plot in the
window using the current histogram data set. Please note that while the graph definition form is open, no
data is being taken.

 Saving a Plot

Plots and the underlying histograms can be saved in a number of way. Available options include:

Saving the layout of the graph page to a script file. Like everything else in PC DAQ, there is a
script file that describes how a graph and the plots within it are organized. By saving this script,
you can later bring back the same graph with all of your layout changes and enhancements. To
do this, first make the window you want to save the active window by clicking anywhere on it.
Then use the menu combination File / Save (or Control-S) to save the script file. The file will
be saved under its current name (the caption along the top of the window). If you have not
already saved the file, a Save File control form will appear. Be sure you save the file using the
extension .SCR. Please to not try to edit [Graph] and [Plot] scripts.

Saving the current view as a bitmap file. You can copy and paste a graph picture into another
Windows program using the standard Copy and Paste commands. To do this, first make the
window you want to save the active window by clicking anywhere on it. Then use the menu
combination Edit / Copy (or Control-C). This will copy the picture to the clipboard. You can
then Paste this image into most Windows programs (Word, PowerPoint, etc.). To save the
bitmap as a .BMP file, Paste the image into Paintbrush, then save as a .BMP file.

Saving the current view as a postscript file. Bring up the Print Manager. Find a postscript printer
and make it the default printer. Go through its property control until you find a “Print to File”
option and select it. Then “print” the file. The system will ask you for a file name. To convert
this into encapsulated postscript, use GhostView. Remember to reset your default printer to
what is normal. A large 2-D plot can be huge (> 50 Mbytes).

Saving the current view in other formats. I don’t have specific recommendations. I would suggest
trying to get a multi-format viewer off the web somewhere. Some of these will read in .BMP
files and then resave them as GIF, TIFF, or other formats. At some point I do plan to be able to
produce WMF (Windows Metafile) formatted files directly. This will allow you to edit the plots
(but not the data) in programs like PowerPoint. One way to get a completely editable plot in
other programs is to first move the histogram data to a spreadsheet (see last item below), create a
chart, then paste the chart object wherever you want it.

HelpManualV4.doc LAUR-98-4531

Page 24 of 86, 1/13/99

Saving the text summary. With each plot, there is a short text summary available that lists such
information as boundaries and averages. You can view the text by toggling the “Text” item in
the Plot menu. Once in text mode, you can use the Edit menu commands to “Select All” then
Copy to the clipboard. Then you can paste and save it to any windows program you wish. To
save the text summary directly, use the menu combination File/Save As… and pick the
extension .SUM. The text summary can also be found at the end of the graph script file as a
comment section.

Saving the underlying histogram(s) as a binary HSV file. To save the histogram data of plot(s)
in the window as a binary file, use the menu combination File/Save As… and pick the
extension .HSV.

Saving the underlying histogram(s) as a text file readable by spreadsheet programs. To save
the histogram data of plot(s) in the window as a tab delimited text file, use the menu
combination File / Save As… and pick the extension .TXT. If the graph contains multiple
plots, each plot will be saved to a separate file with “_n” tacked on to the name. “n” is the plot
number in the graph.

Coping a Plot to another Windows Program

To do this, first make the window you want to save the active window by clicking anywhere on it. Then
use the menu combination Edit / Copy (or Control-C). This will copy a bitmap picture to the clipboard.
You can then Paste this image into most Windows programs (Word, PowerPoint, etc.).

Recalling a Plot

To recall a graph window that has previously been saved as a script file, open the File menu. If the graph
was recently saved, the file may be in the bottom list shown on the menu. If not, use the Open… command
to find and open the script file.

Multiple Plots on a Page

You can have as many plots on a page as you wish. You add or remove plots using the Graph Definition
form (menu Plot / Define…). You change the contents of the plot collection list using the “Add →”and
“ ← Remove” buttons. All plots added with the “Add →” button start out as full-page plots with a plain,
black and white layout. You can move and resize the plots using the plot editor form. Simply click on the
plot in the plot list you want to edit and then click “Edit Plot”. The plot edit form will then appear. See
Detail Control below for further help.

Special Multiple Plots on a Page

While users can add as many plots on a page as they wish, two special types of multiple plot graphs are
predefined. The first is a 2D plot with projections. If from the graph definition form you pick a 2D plot and
then click “2D Project →”, three copies of the 2D plot are placed in the plot collection list. (Any pervious
plots in the collection are removed.) The first plot will be a flat 2D, gray scale plot of the data in the upper
left corner. The second plot is a x projection (sum over y) of the data. It is in the lower left corner. The
third plot is a y projection (sum over x) of the data. It is in the upper right corner. The lower right corner is
blank. The x projection plot has been resized and positioned so that its x-axis display length matches the
x-axis on the 2D plot. Both the x and y projection plots have their x and y plot limits locked to the
display limits on the 2D plot. This means that if you zoom in on an area in the 2D plot, the projection
plots will follow the zoom.

The second type of special multiple plot is the overlay plot. If you select a histogram, and then
“Overlay →”, a plot will be added to the collection with all parts of the plot turned off except for the data
line itself. This is, the title, axis labels and scales, tick and grid marks, etc. will be off. The only graphics
the plot will generate is the data line. In the special condition that this new plot is the second plot in the
collection and both plots are 1D plots, then the second plot will have its scales automatically locked to the
first plot.

HelpManualV4.doc LAUR-98-4531

Page 25 of 86, 1/13/99

Graph Title Control

At the top of the Graph Definition form are controls for an optional page title. The big white box is a text
box in which you can type in your title. For it to be visible, check the box “Show Title”. To change the
font style, click on “Font …”. A font control dialog box will appear. You can change the color of the font
either in the Font dialog box or by using “Text Color …”. The latter gives you a wider range of colors to
chose. Finally, the background color for the page can be selected using “Background Color …”.

Keeping Changes to Graph and Plot Definitions.

Changes to plot and graph definitions are only kept if “OK” is clicked on the Graph Definition form. All
changes to the graph and plots are discarded if “CANCEL” is clicked.

Edit Plot Control

To change the appearance of a plot, select it in the plot collection list of the Graph Definition form, then
click “Edit Plot …”. The Edit Plot form will then appear. This has three major parts.

Caption. The caption of the form tells you which plot in the collection is currently being edited.

Appearance Controls. This is a set of tabs that have controls for defining various aspects of the plot.

Edit Plot Selection Controls. This is the set of buttons on the bottom of the form. With these buttons you
can temporarily save plot changes and cycle through the plot collection.

Plot Appearance Controls

There are seven tabs that have controls that effect the appearance of a plot.

Placement. The Placement tab is used to control where a plot a appears and its size on the page. The
big box on the right side of the control shows where on the page the plot will appear. For 1D
plots, the plot itself is drawn, for 2D plots, only a representational box is shown for speed
considerations. The units of the placement grid are defined by the controls “Number of
Columns” and “Number of Rows”. Column and row counts start at 1. For example, if you want
4 plots in a 2 × 2 arrangement, you would set the number of row and columns to 2. Each plot
would have a height and width of 1. Top and Left would be set to (1,1), (1,2), (2,1) and (2,2)
for the four plots. On the other hand, if your are trying to establish some special effect, you
might set the number of row and columns to a high number, thereby giving you finer
positioning control. Note that each plot can have its own separate grid scale. The top of the
placement gird is measured from the bottom of the page title if present. The individual controls
on the form are:

Placement Display Box. This is the big picture on the right. It shows where on the page
the plot will appear.

Plot Rotation. Allows the plot to be rotated on the page. Not yet implemented.

Top. The row number for the top of the plot.

Left. The column number for the left of the plot.

Height. Height of the plot in rows.

Width. Width of the plot in columns.

Number of Columns. Number of columns in the placement grid. Column numbering
starts with 1.

Number of Rows. Number of rows in the placement grid. Row numbering starts with 1.

Update Display. Update the Placement Display Box. This does not save changes. You
must click on “Save” at the bottom of the form to save any changes.

HelpManualV4.doc LAUR-98-4531

Page 26 of 86, 1/13/99

Force Aspect and Current Aspect. Allows the user to force the aspect ratio. Not
implemented.

Display Only Data Range. If this box is checked, plot displays will always be limited to
the defined region of the histogram. Plot limits outside this region will be ignored. If not
checked, the user supplied plotting limits will be used without regard to the histogram
limits. Histograms have a default value of zero outside their defined limits.

Auto Place. This brings up a new form that allows you to define how to arrange multiple
plots on a page.

♦ The meanings of the values you enter are:

Number of Plots Across: number of columns in placement matrix

Number of Plots Down: number of rows in placement matrix

Assignment order. Does the program go across or down first in assigning spots
in the placement matrix.

Start column: Column (1 to n) for the first plot.

Start row: Row (1 to m) for the first plot.

Step Column: step increment when increasing column number

Step Row: step increment when increasing row number.

Restart assignment after every xx plots. Used when plot overlays are in the list
of plots to place. Resets the plot placement to the value given in start column
and start row after every xx plots.

♦ How to use (no overlays):

Starting with a blank graph definition, add plots to the plot list using the "ADD
->" button. Then go to Edit Plot. Click on "Auto Place". The program will
come up with a tentative assignment scheme. Modify as you wish, then click
OK. The plots will now appear in their new locations. If you want to add plots
after the placement assignment has been done, you need to look at the values in
the placement form closely, as they may look a little odd. It might be best to
start with a new graph.

♦ How to use with overlays:

Multiple overlays can now be handle easily using this form. As an example, say
you have two plots, each with three different cuts. You want to display the two
plots, with the different cuts overlaid. Do the following:

From a blank plot list for the graph, add plots in this order:

"ADD ->" Plot 1, cut 1

"ADD ->" Plot 2, cut 1

"Overlay ->" Plot 1, cut 2

"Overlay ->" Plot 2, cut 2

"Overlay ->" Plot 1, cut 3

"Overlay ->" Plot 2, cut 3

Then go to "Edit plots." Then click on "Auto Place". You will see that the
program is suggesting a 1x2-placement matrix with reassignment restarting
every 2 plots. That is, it detected the overlays and adjusted the placement
accordingly. Click "OK". The program will then ask you if you want to lock the
overlaid plots to the first plot of each type. Click "Yes". Plot placement will
now occur and overlay plots will have their scales locked together. The overlay
plots will also be assigned different line colors. Its that simple.

HelpManualV4.doc LAUR-98-4531

Page 27 of 86, 1/13/99

Style. The style section defines the general form of the plot. Here is where you may manually define
plot limits, scale types, and data presentation style.

Plot Limits. This section is used to define the plot limits for the display and whether the
scale is linear or logarithmic. Note the controls for the first two limits are labeled
Horizontal and Vertical, not X and Y. That is because for 2D projections, this is a clearer
designation of the axis being controlled. If the minimum and maximum limit are set
equal (usually zero), the program will use the plot’s default values. The default values for
an axis are the histogram limits and 110% of the highest bin value for 1D plots or
projections.

Scale Locking. The limits section is where you may lock a plot’s axis to another plot.
First, pick which plot you want to lock to by clicking “Change” next to the “Lock to
Plot” label. A list of plots in the graph will appear. Pick you master plot. Then pick
which axis you want to lock. If an axis is locked to another plot, a user’s changes to the
plot limits for that axis will be ignored.

2D Control. This section tells how 2D plots will be displayed. Choices are X Projection
(y sum), Y Projection (x sum), or a Flat view with a color scale. Other 3D views are not
yet defined. For the Flat view, “Scale” says that a color scale legend should be drawn on
the right side of the graph. “B/W” distinguishes between a black and white scale or a
color rainbow scale. “Invert” allows you to invert the gray or color scale.

Connect the Dots. This sections tell how the data points are to be connected for 1D and
projection plots. You can use a step line, a straight line, or symbols. Any combination is
allowed. If symbols are used, you may specify the interval for showing the data. For
example, a spacing of 3 means every third data point has a symbol displayed. If a symbol
is desired, use the symbol selection area to select the symbol desired. The “Font …”
command currently does not affect anything.

Fonts. The Font tab controls how and whether axis labels and scales appear. For now, the Font…
command can only control the color of the text. Later program versions will allow true font
choices to be made. Similarly, the Format sections are currently inoperative. What you can
control is color and whether an object is shown or not. So most of this control should be
considered “Under Construction.”

Lines and Fill. This tab controls the outline and fill of various regions and the histogram line type.
The three regions are the plot area, the smaller area within the plot that data is plotted within,
and the z axis color scale area. The boxes on the left edge of the control show the current look of
the fill region. On the bottom of the control is the appearance of the histogram data line. You
can change the appearance of this line by clicking “Change …”. This will bring up the line
format dialog box. Here you can change the line’s color, thickness, and style.

Grid. The Grid tab controls the appearance of grid lines. A major grid line is drawn at the position of
the major tick marks. Minor grid lines are drawn at the location of minor tick marks. The Zero
grid lines are drawn on the axis. User 1 and User 2 are the optional lines defined by the /xd and
/yd options in histogram definition script. The user optional lines are not yet implemented. The
check boxes in upper part of the form controls the visibility of the lines (i.e., whether or not they
are drawn). The “Change …” buttons at the bottom of the form allow you change color, line
style, and thickness of the appropriate grid line.

Ticks. The Tick tab controls which ticks are shown and their interval. The first part of the form
controls ticks visibility. Tick color and thickness is controlled by the “Change …” button on
the bottom of the form. The tick spacing controls have yet not been implemented.

View. The view tab shows you what the current plot looks like by itself.

Edit Plot Selection Controls

There are five buttons at the bottom of Edit Plot form:

HelpManualV4.doc LAUR-98-4531

Page 28 of 86, 1/13/99

OK. Temporarily saves any outstanding changes and goes back to the Graph Definition form.
Changes do not become permanent until the Graph is saved by clicking “OK” on the Graph
Definition form.

Save. Temporarily saves any outstanding changes to a plot. Changes do not become permanent until
the Graph is saved by clicking “OK” on the Graph Definition form.

Cancel. Remove any changes back to the last Save. The program then goes back to the Graph
Definition form. If you want to cancel changes without going back to the Graph Definition form,
click on “Next Plot”. Answer No to the question about saving changes. Then cycle around to
the original plot.

Next Plot. Cycle through the plot collection to the next plot. If changes have been made to the current
plot and not saved, the program will ask if the changes should be saved.

Help. Someday this may do something.

Zoom

Zooming comes in two forms. The regular zoom command is used to select an area on the plot for
expansion. The Zoom Z command is used to change the Z-axis scale on 2D plots. To go into zoom mode,
select either Zoom or Zoom Z under the Plot menu. You will get a crosshair cursor in the active graph
window. Use the mouse to move the cursor. The coordinates of the cursor are shown at the bottom, left
corner of the plot. To define the expansion region, move the mouse to one corner of the new area, and then
push the left mouse button. Keeping the left button down, drag the cursor to the opposite corner of your
new box, then lift up on the button. The plot will then be redrawn. Normally, if your new box goes
outside the defined region of the histogram, the plot limits will be reset to the defined limits of the
histogram. This can be turned off in the plot edit control.

If there are multiple plots on the graph page, you must pick which plot you want to zoom on. Use the
menu combination Plot / Pick Zoom/Gate… to bring up a list of plots in the current window. Pick which
plot you want to zoom on. When you do the zoom, the labels giving the cursor position will appear in the
lower left of the selected plot.

If other plots on the page have their scales locked to the plot you are zooming on, their scales will be
changed appropriately. If the plot you are zooming on is already lock to another plot, your changes to the
locked scale will be ignored.

While you are “zooming,” no data is being taken. You can stop by clicking the right mouse button.
Otherwise, the zoom feature will turn itself off in 30 seconds.

Printing

First make the window you want to save the active window by clicking anywhere on it. Then use the
menu combination Edit / Print (or Control-P). The output goes to the currently defined default printer. To
change the printer, change the default printer in the Print Manager. Likewise, to change printer properties
such as orientation, change the printer properties using the Print Manager. The default condition for printer
plots is to append the text summary to the page. If you don’t want this, click on “Append Notes.”

Update, Reset, and Redraw

You can cause the currently active plot window to be redrawn in three modes. The commands are under the
Plot menu. Redraw draws the plot(s) with the current values of the histogram, but with all of the scale
limits unchanged. Update draws the plot(s), but updates the data axis to match the current maximum value.
Reset draws the plot(s) with all of the scale limits reset to their default values. Commands are provided to
allow you to replot all open windows at the same time. Finally, shortcut keystrokes are provided for all the
replotting commands (see the Plot menu for the keystrokes).

HelpManualV4.doc LAUR-98-4531

Page 29 of 86, 1/13/99

Text summary

With each plot, there is a short text summary available that lists such information as boundaries and
averages. You can view the text by toggling the “Text” item in the Plot menu. Averages are reported only
for the portion of the plot that is currently visible. Underflows and overflows give the counts outside the
defined histogram limits, regardless of what the visible plot limits are.

One Dimensional example:

[COMMENT]
 Run Number: 460
 Data Time: 7/2/96 10:19:31 PM
 Clock Time: 8/26/96 7:36:19 PM

Plot: S1 TDC
Event, Block, Index: 14, 1, 11
No test defined.
For Display Range Only
 FirstXBin, LastXBin: 1, 200
 Xmin, Xmax, Bin Size: 100, 300, 1
 Sum of Bins: = 29355
 X Average (bin centered): = 206.5001 ± 2.474714E-02
 X Sigma: = 4.240002
 Y Average: = 146.775 ± 3.509846
 Y Sigma: = 601.3525
For Entire Plot:
 Number of Underflows: = 0
 Number of Overflows: = 2

Two Dimensional example:

[COMMENT]
 Run Number: 460
 Data Time: 7/2/96 10:19:31 PM
 Clock Time: 8/26/96 7:37:01 PM

Plot: Set 1, X vs theta raw
Event, Block, X Index, Y Index: 15, 2, 307, 216
Test: 51, Test Count: 8658
For Display Range Only
 FirstXBin, LastXBin: 1, 1000
 Xmin, Xmax, Bin Size: -10, 10, .02
 FirstYBin, LastYBin: 1, 40
 Ymin, Ymax, Bin Size: -.03, .03, .0015
 Sum of Bins: = 8657
 X Average (bin centered): = 8.260252E-02 ± 4.563814E-02
 X Sigma: = 4.246309
 Y Average (bin centered): = -8.724151E-05 ± 9.881034E-05
 Y Sigma: = 9.193611E-03
 Z Average: = .216425 ± 1.369031E-02
 Z Sigma: = 1.273788
For Entire Plot:
 Number of Overflows: = 1

Stepping Through Plots

You can step through plots using the Next Plot and Next Page commands under the plot menu. Shortcut
key are defined (see the menu). For graphs with only one plot, the two commands are the same. Pressing
Next Plot changes to the next plot in the internal histogram list with the same plot type. (Previous Plot
and Previous Page go backward through the list.) If you have multiple plots, then there is a difference. For
Next Plot, the histogram index is incremented by one. For Next Page, the histogram index is incremented
by the number of plots on the page. You use Next Plot, for instance, if all the plots on the page are the
same histogram viewed different way, like a 2D plot with projections. Use Next Page if you are looking at
a series of plot. For example, if you are looking at hit frequency plots for chambers 1 to 4, then press Next

HelpManualV4.doc LAUR-98-4531

Page 30 of 86, 1/13/99

Page, you would get chambers 5 through 8. The histogram list order is defined by their appearance in the
command script.

HelpManualV4.doc LAUR-98-4531

Page 31 of 86, 1/13/99

 Histograms

See the section on script formats for histograms until this section is finished.

Time

1D

2D

Multiple entries

Starting Replay from an Existing HSV File

When you replay multiple runs, you often want to accumulate histograms over those runs. Sometimes it
will be desirable to start the accumulation with a pre-existing HSV file. With care, this is easy to do.

Run your default setup script file.

Go to the Run / PC DAQ form and initialize the run.

Use the browse button to get the HSV file.

Click Start to run the HSV file. The HSV file is then read in.

Use Browse… button to get your new replay data file (*.dat) or batch file list (*.bat).

Under the Menu command sequence Options / Replay…, the replay command form will appear.
TURN OFF “Histogram Data.” This option was set by program when you earlier selected the
HSV file. Failure to turn it off will wipe out the accumulating data.

Turn off “Clear Histograms at Run Start” if on.

Start the data replay.

Adding Histograms after the Fact

Occasionally you want to add histogram definitions and maybe data to the list already in memory without
resetting or zeroing what is already present. This can be done in two ways. First, they can be added from a
script file using the [AHI] section command instead of the [HIST] section command. AHI mean Append
Histogram. All the same syntax rules apply. [AHI] simply skips over the reset code when it used.

The second way to append data is to read in a HSV file with the new histograms defined within it. After
you pick the HSV file for reading, go to the menu Options / Replay… to get the replay control form. Turn
OFF “Reset Histogram List.” You will probably also want to turn off “Clear Histograms at Run Start” on
the run control form. Then start the HSV run. Remember that the appended histograms should have unique
names.

After you have created your expanded histogram list, it is probably a good idea to save this setup to a new
HSV file, and then use the new expanded file as your HSV replay file.

HelpManualV4.doc LAUR-98-4531

Page 32 of 86, 1/13/99

 Accessing Histogram Data in ANALnn Programs

Sometimes you will want to get at the contents of a histogram from within an ANALnn program. You
would most probably want to do this in response to the “ uEndOfRunCall ” call. Note that this call is
generated whenever a run ends, whether the run is live data, replay data, or an HSV file. All that is needed
is to enable the event and user analysis for the event. Thus, the way to write an analysis of HSV data is to
pick an unused event number and then place your analysis code in the End-of-Run section. Then add event
and user enable commands to your default command script. Then, whenever you read in the HSV file, the
analysis code is automatically called. Also, the begin-of-run analysis is done for enabled events, which
would mean your database is read-in if it is one of the enabled events.

The following routines are provided to get at histogram information. A general histogram manipulation
program set would have many more routines, but that must await future upgrades.

Integer*4 Function GetHistIndex(Name, EventNumber, BlockIndex, HistogramType)
Character*(*) Name ! Name (title) of the histogram.
Integer*4 EventNumber ! Event number of histogram
Integer*4 BlockIndex ! System block for histogram data source
Integer*4 HistogramType ! Histogram type (0=time, 1=1d, 2=2d)

This routine gets the index to the histogram list for the specified histogram. Only the first 40
characters of Name are used. If EventNumber or BlockIndex are zero, they are ignored.
Remember that the combination of the these four quantities should uniquely specify a histogram.
If the histogram does not exist, -1 is returned.

Subroutine ClearHistogram(Index)
Integer*2 Index

This routine clears (zeros) the specified histogram.

Integer*4 Function Get1DPointer (hIndex, XValue)
Integer*4 hIndex
Real*8 Xvalue

This program calculates the absolute location in the array HistBuffer for a given histogram and
value. Thus, if you want to set the value for histogram 5 for x=3.4, do:
 HistBuffer(Get1DPointer(5,3.4)) = value
Remember that HistBuffer is an I*4 array. Get1Dpointer properly checks for and adjusts its
output if an underflow or overflow occurs. If the histogram is not defined, it returns a value of -1.

Integer*4 Function Get2DPointer (hIndex, XValue, YValue)
Integer*4 hIndex
Real*8 XValue
Real*8 YValue

This program calculates the absolute location in the array HistBuffer for a given histogram and
value. Thus, if you want to set the value for histogram 5 for x=3.4 and y=9, do:
 HistBuffer(Get2DPointer(5,3.4,9)) = value
Remember that HistBuffer is an I*4 array. Get2Dpointer properly checks for and adjusts its
output if an underflow or overflow occurs. If the histogram is not defined, it returns a value of -1

Subroutine HistRatio1D (Numerator, Denominator, Result)
Integer*4 Numerator
Integer*4 Denominator
Integer*4 Result

This routine computes the ratio of two histograms and put the results in a third. If the
denominator is zero, it divides by 1 instead.

Subroutine HistRatio2D (Numerator, Denominator, Result)
Integer*4 Numerator

HelpManualV4.doc LAUR-98-4531

Page 33 of 86, 1/13/99

Integer*4 Denominator
Integer*4 Result

This routine computes the ratio of two histograms and put the results in a third. If the
denominator is zero, it divides by 1 instead.

Subroutine HistStat2D (hIndex, FirstXBin, LastXBin, FirstYBin, LastYBin, XArray, Yarray,
SumZ, SumZZ, SumZX, SumZXX, SumZY, SumZYY, SumZXY, zMaximum, zMinimum)
C
C Input parameters
C
 Integer*4 hIndex ! Index number of Histogram
 Integer*4 FirstXBin ! Bin number of first X bin (1->.xbins)
 Integer*4 LastXBin ! Bin number of last X bin
 Integer*4 FirstYBin ! Bin number of first Y bin (1->.xbins)
 Integer*4 LastYBin ! Bin number of last Y bin
 Real*8 Xarray(FirstXBin:LastXBin) ! Array of x values
 Real*8 Yarray(FirstYBin:LastYBin) ! Array of y values
C
C Output Parameters
C
 Real*8 SumZ
 Real*8 SumZZ
 Real*8 SumZX
 Real*8 SumZXX
 Real*8 SumZY
 Real*8 SumZYY
 Real*8 SumZXY
 Real*8 zMaximum
 Real*8 zMinimum

This routine computes various sums involving both the data in a bin and the coordinate of the
bin.

 Subroutine HistSum2D (hIndex, FirstXBin, LastXBin, FirstYBin, LastYBin, SumZ, SumZZ,
zMaximum, zMinimum)
C
C Input parameters
C
 Integer*4 hIndex ! Index number of Histogram
 Integer*4 FirstXBin ! Bin number of first X bin (1->.xbins)
 Integer*4 LastXBin ! Bin number of last X bin
 Integer*4 FirstYBin ! Bin number of first Y bin (1->.xbins)
 Integer*4 LastYBin ! Bin number of last Y bin
C
C Output Parameters
C
 Real*8 SumZ
 Real*8 SumZZ
 Real*8 zMaximum
 Real*8 zMinimum

This routine computes various sums involving only the data in a bin but not the coordinate of
the bin.

To get at a histogram’s data, you must first find the index to the histogram list. This is provided by the
routine GetHistIndex. You should always check that the lookup was successful. Look at the code in
HistRatio2D for an example of how to get and put data into the histogram buffer. Even if a histogram is to
be computed rather than accumulated, its definition in the script file must still give block and index
information even though it is meaningless. So make up something.

HelpManualV4.doc LAUR-98-4531

Page 34 of 86, 1/13/99

Changing Histogram Names and Axis Labels

It may happen that you need to change a histogram’s name or axis label without rerunning a script. This
usually happens because you already have data in the histogram or the histogram comes from an HSV file.
You can do this in the Histogram definition control form. Use the Menu combination Options /
Histograms… to get to the form. Make the changes you want, then click “Change” to save the changes. If
you are changing the name in a HSV file, you should save the histograms to a new histogram file.

Saving Multiple Histograms as a Binary File

You can manually save histograms to a HSV file at any time. At the bottom of the run control form is a
button “Save Histograms.” Clicking this button brings up the Histogram Save form. You can save (1) all
histogram, (2) only those histograms that have the /lo flag set in their script definition, or (3) a selection
you will pick for the list on the right of the form. The right hand list responds to the standard Windows
list selection commands. Once your selection is done, click on “Save Histograms” to get the file dialog
box. Other ways of saving histogram information are in the section on saving plots .

HelpManualV4.doc LAUR-98-4531

Page 35 of 86, 1/13/99

Data Screen

This section has not been written yet

HelpManualV4.doc LAUR-98-4531

Page 36 of 86, 1/13/99

Q Test Package

GENERAL CONCEPTS

Purpose of the Test Package

The purpose of the test package is to provide the experimenter or programmer with a dynamic, convenient
means of examining and classifying data on an event-by-event basis. Data of that kind would typically arise
either in a data acquisition/replay environment or in a Monte Carlo style calculation. The package is
convenient in that only a minimal amount of information need be specified in the program at the time it is
written. It is dynamic in that all details about what tests are to be performed are specified in a user-created
file called the Test Script . This way of doing things means that the tests may be changed without the need
to compile and link the program.

Overview of Capabilities

The package is quite powerful in that any set of tests expressible in LOGICAL or ARITHMETIC IF
statements in FORTRAN may also be performed within the framework of the test package.

There are three basic types of tests: ARITHMETIC, USER, and LOGICAL. The ARITHMETIC test is
used to examine the values of data words for such purposes as setting gates on values, checking for
equality, and examining bit patterns. The USER test is provided so that users may incorporate the logical
results (.TRUE./.FALSE.) of their own "tests" into the framework of the test package. The LOGICAL tests
are used to form various logical combinations (.AND., .OR. (inclusive and exclusive), and .NOT.) of the
results of any of the previously performed tests.

The tests are performed together in groups called BLOCKS. All tests within a given BLOCK are executed
in response to a single subroutine call (TSTEXE) during the analysis of an event. The analysis subroutine
for an event may contain only a single BLOCK of tests, or it may have several. After execution of a
BLOCK of tests, the results (.TRUE. or .FALSE.) are stored in Test Result Flags and are available within
the analysis routine for any use desired. The BLOCKS used need not be the system blocks. Possible uses
would be to control the program flow or to control entry into a user-written histogramming routine. Also
included for each test, is an I*4 counter which is incremented each time that test is passed. A similar
counter exists for each BLOCK that keeps count of the number of times that block of tests is executed.
These counters are useful for summary information (e.g., what fraction of all events hit counter #3). The
values of these counters are available both within the program and also to separate programs.

Users should be aware that the test block numbers do not have any necessary correlation to the block
numbers defined for the histogramming system. However, as a matter of convenience, it may be very useful
to make the block number for a set of histograms the same as the block number for the tests which are used
to control entry into those histograms.

You can view the list of defined tests by looking at the Test Definition control. You bring this up by the
following menu commands: Options / Tests… / . This control form has three drop down lists that show
the current set of tests, gates, and boxes. At the moment, this control is used to display data only. No
editing can be done. You may, however, generate a script based on the current list of tests by clicking on
"Generate Script." This will dump the current set of test definitions into the "Replay Script" window. This
can be used to generate text script commands for indirect gates that have the current values as their default
setting.

You can view and control the current value of the test counters by looking at the Test Screen. You bring
this up by the following menu commands: View / Test Screen /. This brings up the Test Screen
Control. You can make the viewing area larger by resizing the form or you can scroll the list box. This
control allows you to reset the counters, print them, or copy them to the clipboard (for pasting into, say, a
spreadsheet).

HelpManualV4.doc LAUR-98-4531

Page 37 of 86, 1/13/99

Room has been allocated for 500 tests in 100 blocks and including 100 Indirect Boxes and 100 Indirect
Gates. This is set by the parameters: NumberOfTests, NumberOfTestBlocks, NumberOfTestGates, and
NumberOfTestBoxes in both the FORTRAN and VB code.

Connection to Event Numbers

The test package is intended for use both in the data acquisition/replay environment and in Monte Carlo
calculations that may have quite a different structure. For this reason, no connection is made directly
between tests and event numbers. However, the breakup of tests into BLOCKS lends itself nicely to use
within the PC DAQ framework.

If the analyzer has only one event type on which tests are to be performed, there is no problem. The block
number(s) of the tests can be chosen as desired and need not bear any relationship to the event number. In
the case that more than one event type is making use of the tests, one must decide at the time the program
is written which test BLOCKS will be used in which event processor. Since all the tests in a BLOCK are
performed together, it is not possible to have a single BLOCK serve for two events. It is possible for the
LOGICAL TESTS in one event number to make use of the results from the tests in a different event
number, but such applications do require careful programming and are not recommended for the novice.

Connection to Histogramming

Although the Test Package may be used separately from the PC DAQ standard histogramming subsystem,
a number of benefits accrue if it is used in conjunction with it and its associated support programs. The first
is that the results of the tests may be used to control whether or not a given histogram is incremented. This
ability comes essentially for free and can be specified by the user when the histogram is defined. The second
benefit is that the plotting system can be used with the mouse to specify data word indices and limits for
certain of the ARITHMETIC TESTS called INDIRECT GATES and INDIRECT BOXES. The third
benefit is that the entire test data base, including the values of the test and block counters, and the indices
and limits of the indirect gates and boxes, can be saved.

User Information

This section is intended to provide information necessary to operate the test package, assuming that the
programming has already been done. This section will provide the information needed to write a test
descriptor file and to set up and modify the data limits for the INDIRECT GATES and BOXES.

A certain amount of cooperation is necessary between the programmer and the person who writes the test
descriptor file if the test package is to be useful. It is necessary to coordinate which BLOCK numbers will
be used in which location since these must be specified both in the analysis subroutine and in the Test
Descriptor File. It is also necessary to have some idea of where in the course of analysis each block of tests
is being executed. It makes little sense to test a value which has not yet been calculated for a given event or
which is not contained in the array specified in the call to TSTEXE. Beyond these relatively simple
considerations, the person who writes the test descriptor file is pretty much able to operate independently of
the programmer.

The test descriptor file is the mechanism for specifying nearly all information about what tests are to be
performed on the data. The only exception to this rule is that the limits for the so-called INDIRECT
GATES and INDIRECT BOXES.

There are three types of lines allowed in a test descriptor file:

• Comment lines

• Block delimiter lines

• Test descriptor lines

Each will be discussed in some detail below and a sample Test File.

There is no particular order in which the blocks must be defined. A given block of tests is referenced at
execution time only by the block number specified in the call to TSTEXE. This means that the order of

HelpManualV4.doc LAUR-98-4531

Page 38 of 86, 1/13/99

execution of various blocks does not depend on the numerical sequence of block numbers or the order in
which they were defined in the Test File.

An error will result if the delimiter for the specified BLOCK has previously been encountered in the file.

Users should be aware that the setup program has no way of knowing whether you are defining tests for a
block which will never be called in the program executing the tests or whether that program will call a
block for which no tests have been defined. Neither of these situations can result in an error condition in
compiling a script. In the former case, an examination of the Test Screen will indicate that the block was
never executed. In the latter case, an error condition code will be returned by the subroutine (TSTEXE) in
the analyzer, but no error message will be printed.

It should also be noted that it is perfectly legal to have a BLOCK containing no tests. This would occur if
the file contained two successive block delimiter lines. In this case, since the BLOCK has been defined, no
run time error would occur and only the block counter would be incremented each time the appropriate call
was made to TSTEXE.

Test Descriptor Lines

These lines are used to specify the tests to be performed. One and only one test can be specified per line.
The general format of each line is that of a test number followed by the appropriate test description. The
syntax for each test along with its description will be given in Test Scripts . The test numbers should be
considered as numeric labels for tests. They have nothing to do with the order in which the tests are
performed. That is determined by their order as encountered in the file and the order in which the specific
blocks are executed by the user program.

A given block of tests will be considered ended when the next block delimiter line or the end of the file is
encountered. Within a given block of tests, the number you may assign to each test is arbitrary as long as
three conditions are met. First, it must not be larger than the value of NumberOfTests parameter given in
the PCDAQ global include files (VB and FORTRAN). Secondly, it must not duplicate an already used
test number. Unlike the Q test package, different blocks may have overlapping test numbers. For example,
if BLOCK 1 has tests ranging in number from 1 - 40, other block may contain a test number in that range.
If any of these restrictions is violated, an appropriate error message will be issued by PC DAQ when you
run the script.

Test Helpful Hints

While it is not required, it is probably a good practice to place all LOGICAL TESTS in a given block
after all ARITHMETIC TESTS in that block. This lessens the likelihood that a LOGICAL TEST might
be used to refer to an ARITHMETIC TEST that has not yet been performed. It is also probably good
practice to number tests within a given BLOCK sequentially when the TEST DESCRIPTOR FILE is first
being written and to leave a gap in the test numbers between BLOCKS. This allows for tests to be inserted
later in any BLOCK without having to worry about test numbers overlapping for different BLOCKS.

Description of Tests

This section will describe in detail the function of each of the tests and the syntax for the descriptor line in
the TEST DESCRIPTOR FILE. A few general rules applying to all test descriptors are given below:

• Unless otherwise specified, all test numbers are integers. Test parameters are saved as double precision
numbers.

• Within a test descriptor, commas, spaces, and tabs will be taken to be delimiters between various
parameters of the test. A succession of tabs or spaces will be treated as a single tab or space, but
successive commas will be taken as separate delimiters. This allows for tabs and spaces to be used
freely to create a neater file format.

• Each test descriptor must begin with a user-assigned test number. This value (NTST) must fulfill the
condition 0 < |NTST| ≤ NumberOfTests. The value of NTST must be followed by a delimiter. If
NTST is negative, then the specified test must fail for the test to be true.

HelpManualV4.doc LAUR-98-4531

Page 39 of 86, 1/13/99

• The second element on each descriptor must be the type for the desired test. It is always sufficient to
enter only the first two characters of the type, although more may be typed for intelligibility. The test
type must be followed by a delimiter.

Following the test name are the parameters (if any) of the test. All parameters are separated from one another
by delimiters.

All arithmetic tests specify a data word index for the data word to be examined. This index is the same as
that one would specify for an array in FORTRAN, with the first index in the array being 1 not 0. A data
word index with a value < 1 will be flagged as an error. Exactly which array is being referred to is
determined by the call to subroutine TSTEXE. This is illustrated in the following example:

CALL TSTEXE (NBLK, IDAT,IERR)

Then a Data Word Index of 13 refers to IDAT(13) but

CALL TSTEXE(NBLK,JDAT(50),IERR)

Then a Data Word Index of 13 refers to JDAT(62)

The call to TSTEXE (the test call) has been upgraded so that the data array can be any type (I*2, I*4, R*4,
or R*8). All data word indices in a given BLOCK of tests will be taken as referring to the same array. If it
is necessary to perform tests on more than one array of data, such tests must be done in separate BLOCKS.
In the case of INDIRECT GATE and BOX tests, the data word indices need not be specified in the test
descriptor file. They are most commonly taken from information provided from the display using the
graphic input cursor. However, they still refer to the array given in the call to the subroutine TSTEXE. In
all examples used below, it is assumed that the call to the test execution subroutine is:

CALL TSTEXE(NBLK,IDWD(1),IERR).

In each logical test, you may specify both a set of tests you want to have been passed (i.e., be .TRUE.) and
a set of tests you want to have been failed (i.e., be .FALSE.). In all Logical tests, you refer to the tests you
want to be .TRUE. by their test number, and to the tests you want to be .FALSE. by their test number
preceded by a minus sign (-). Users should take particular note that a test which has not yet been performed
in the analysis of the current event is taken to be .FALSE.

BIT TEST

NTEST, BI (t), INDX, IBITNO

The BIT TEST looks to see if the specified bit in a given data word is set to 1. If it is set to 1, the test is
.TRUE.; otherwise, it is .FALSE. The status of any other bits in the data word is irrelevant. The test is
.FALSE. if a floating point data array is used in the call to TSTEXE.

Example:

23,BIT,15,1

Test 23 is .TRUE. if IDWD(15) = 6(octal)

Test 23 is .FALSE. if IDWD(15) = 5(octal)

EQUALITY TEST

NTEST,EQ(ual),INDX,VAL

The EQUALITY TEST is .TRUE. if the specified data word has exactly the value given. NTEST, INDX,
are integer values. VAL is double precision.

Example:

HelpManualV4.doc LAUR-98-4531

Page 40 of 86, 1/13/99

2,EQ,120,-352

Test 2 is .TRUE. if IDWD(120)=-352.

PATTERN TEST

NTEST,PA(ttern),INDEX,MASK,IVALUE

The PATTERN TEST checks to see if the given data word, after masking for bits of interest, is identical
to the specified value on a bit for bit basis. For convenience, MASK and IVALUE are expressed as
OCTAL values (O8 format). The test is .FALSE. if a floating point data array is used in the call to
TSTEXE. The test is .TRUE. if:

IAND(MASK,IDWD(INDEX)) = IVALUE.

Example:

25,PATTERN,29,176,170

Test 25 is .TRUE. if IDWD(29) = 30171(octal) {IAND(176(octal), 30171(octal)) = 170(octal)}

Test 25 is .FALSE. if IDWD(29) = 173(octal) {IAND(176(octal), 173(octal)) = 172(octal)}

GATE TEST

NTEST,GA(te),INDEX,LIMLO,LIMHI

The GATE TEST checks if the specified data word is both ≥ some lower limit (LIMLO) and < some
upper limit (LIMHI). Thus, the test is true if:

(IDWD(INDEX) ≥ LIMLO) .AND. (IDWD(INDEX) < LIMHI)

Example:

49,GATE,33,-250,100

Test 49 is .TRUE. if (IDWD(33)≥-250).AND. (IDWD(33)<100).

INDIRECT GATE TEST REFERENCE

NTEST,IG(ate),NGATE

The INDIRECT GATE TEST operates exactly the same as the normal GATE TEST except that the data
word index and the upper and lower limits are provided indirectly. They may either be taken from a plot of
a histogram or they may be entered manually using the /GA control. The first mode would be the most
common method in actual use. The latter mode would likely be used only if one needed to set the limits to
some previously determined values. Abs(NGATE) must be a number between 1 and NumberOfTestGates.

NOTE: When referring to an INDIRECT GATE for purposes of setting up data word indices and limits
one ALWAYS uses the INDIRECT GATE NUMBER and NEVER the test number. If no values were
previously defined for a given indirect gate or box, then all data word indices and upper and lower limits
will be set to zero. In particular, this means that such tests will never be true until these values have been
set up.

Example:

99,IGATE,2

Test 99 consists of INDIRECT GATE No. 2.

INDIRECT BOX TEST REFERENCE

NTEST,IB(ox),NBOX

The INDIRECT BOX TEST is basically a combination of two INDIRECT GATE TESTS. Its main use
is to define a rectangular region of interest on a two-dimensional histogram. Abs(NBOX) must be a number

HelpManualV4.doc LAUR-98-4531

Page 41 of 86, 1/13/99

between 1 and NumberOfTestBoxes. It requires two data word indices (INDX1,INDX2) and two sets of
lower (LIMLO1, LIMLO2) and upper (LIMHI1, LIMHI2) limits. These data words either may be given
explicitly using the /BO command or may be taken from a two-dimensional histogram plot. This test is
true if:

(IDWD(INDX1) ≥ LIMLO1) .AND. (IDWD(INDX1) < LIMHI1) .AND. (IDWD(INDX2) ≥ LIMLO2)
.AND. (IDWD(INDX2) < LIMHI2)

Example:

15,IBOX,4

Test 15 consists of BOX No. 4.

AND TEST

NTEST,AN(d),N1,N2[,...,Nm]

The AND TEST looks to see if all specified tests are in their requested state (.TRUE. or .FALSE.). Tests
one desires to be .TRUE. are referred to by their test numbers. Tests one desires to be .FALSE. are referred
to by their test numbers preceded by a minus sign (-). No specific order is required in specifying the test
numbers.

Example:

15,AND,2,27,-3,5

Test 15 is .TRUE. if Tests 2, 5, and 27 are .TRUE., and Test 3 is .FALSE.

INCLUSIVE OR TEST

NTEST,IO(r),N1,N2,...Nm

The INCLUSIVE OR TEST is .TRUE. if any of the specified tests are in their requested state (.TRUE. or
.FALSE.). Tests one desires to be .TRUE. are referred to by their test numbers. Tests one desires to be
.FALSE. are referred to by their test numbers preceded by a minus sign (-). No specific order is required in
specifying the test numbers. The number of entries is limited to 10.

Example:

27,IOR,-2,5,-3,14

Test 27 is .TRUE. if either

Test 5 or 14 is .TRUE. or

Test 2 or 3 is .FALSE.

EXCLUSIVE OR TEST

NTEST,EO(r),N1,N2,...Nm

The EXCLUSIVE OR TEST is .TRUE. if exactly one of the tests specified as .TRUE. is .TRUE. or
(exclusive) exactly one of the tests specified as .FALSE. is .FALSE. Tests one desires to be .TRUE. are
referred to by their test numbers. Tests one desires to be .FALSE. are referred to by their test numbers
preceded by a minus sign (-). No specific order is required in specifying the test numbers. The number of
entries is limited to 10.

Example:

11,EOR,2,3,-5

Test 11 is .TRUE. if Test 2 or (exclusive) Test 3 is .TRUE. or (exclusive) Test 5 is .FALSE.

HelpManualV4.doc LAUR-98-4531

Page 42 of 86, 1/13/99

MAJORITY TEST

NTEST,MA(jority),NCNT,N1,N2,...Nm

The MAJORITY TEST operates much like a NIM majority logic unit. The test is .TRUE. if at least
NCNT of all tests specified are in the desired state. Tests one desires to be .TRUE. are referred to by their
test numbers. Tests one desires to be .FALSE. are referred to by their test numbers preceded by a minus
sign (-). No specific order is required in specifying the test numbers. The number of entries is limited to
10.

Example:

15,MAJORITY,3,2,4,-6,-7

Test 15 is .TRUE. if at least three of the following occur: Tests 2 or 4 are .TRUE. or Tests 6 or 7
are .FALSE.

NOTE: Since the syntax for the MAJORITY TEST is slightly different than that of the other
Logical tests, a warning message will be issued if the value of NCNT appears to be unreasonable
(i.e., either £ 0 or > number of tests specified).

USER TEST

NTEST,US(er)

The USER TEST provides the facility for incorporating into the test package information not conveniently
obtainable from the standard tests. Its use requires a close cooperation between the programmer and the
person writing the TEST FILE, since the only information specified in the TEST FILE is what the test
number is. The programmer MUST call a subroutine (TSTSET) in the analyzer to set the value of this
type of test to .TRUE. It should also be noted that the test result flag for this test does not become .TRUE.
nor is the counter incremented when TSTSET is called. Both those operations occur only when TSTEXE
is called for the BLOCK containing that USER TEST.

Example:

15,USER

Test 15 is defined as a USER TEST.

INDIRECT BOX TEST DEFINITION

/BO:boxnum:[xindx:xlo:xhi:yindx:ylo:yhi]

This switch is used to enter the limits for Indirect Box "boxnum" manually. The values are self
explanatory.

INDIRECT GATE TEST DEFINITION

/GA:gatnum:[indx:lolim:hilim]

This switch is used to enter the limits for the gate "gatnum" manually. The values required are self
explanatory.

Sample Test Descriptor File
;
; The following is a sample Test Descriptor File
; for EXPT. 6.33 studying polarized pion scattering from
; Linoleum-223, Feb. 30-31, 1982 BC.
;
; Room has been allocated for 500 tests in 100 blocks and including
; 100 Indirect Boxes and 100 Indirect Gates.
;

HelpManualV4.doc LAUR-98-4531

Page 43 of 86, 1/13/99

BLOCK,1 !This begins first BLOCK of tests
1,GATE,122,0,100 !Gate Test on Data word 122
2,GATE,123,-100,0 !Gate Test on word 123
3,IGATE,5 !Indirect Gate #5,
20,IBOX,2 !Box #2, Test Numbers need not be ordered
;
; Indirect Gates and Boxes do not need to be defined in order
; nor do all Indirect Gates and Boxes for which room has been
; reserved need to be defined.
;
4,PATT,2,377,3 !Low byte of data word 2 must = 3
6,AND,1,2 !Tests 1 and 2 must both be .TRUE.
;Tests do not need to be sequential
9,EOR,3,4 !Either tests 3 or 4 must be .TRUE.
10,USER !User results included by this test
11,AND,1,-1 !This test will never be .TRUE.
12,IO,1,-1 !This test will always be .TRUE.
13,MAJOR,3,1,2,3,4,6,9 !This test will be .TRUE. if at least 3 of
; ! Tests 1,2,3,4,6,9 are .TRUE.
;
; Here ends first block and begins block 3.
; Note, since block 1 contains tests ranging in number from
; 1-20, that other blocks may not have any test in this range. ;
;
BL,3 !Block 2 doesn't need to exist
;
;
21,IOR,23,24 !This test will never be .TRUE. since we have
; !not defined tests 23 and 24 yet
;
; This is the end of the tests.
; Not all 100 tests for which room has been allocated need
; to be defined.
;
; Indirect boxes and gates can also be defined in the script.
; Box and gate definitions can appear anywhere in the script.
; They are not associated with any block, regardless of where they appear
; in the script.
/bo:5:18 ! indirect box 5, index is 18
/ga:45 ! indirect gate 45

PROGRAMMER INFORMATION

This section is intended to provide the programmer with all the information needed to incorporate the test
package into an analyzer or other user program. It will include sections describing each subroutine and
function available to the user.

Subroutines and Functions

Note for old Q programmers, the subroutines TSTMAP and TSTINI are included only for compatibility
with old code. They do nothing.

Subroutines are provided to clear test result flags, clear test and block counters, set the value of User tests,
execute blocks of tests, and retrieve the current values of the test result flags and test and block counters.

As a general rule, all subroutines return an error flag to indicate the nature of any errors encountered.
However, they do not issue any error messages on the user terminal. If the programmer desires that an error
message be issued, such capability must be explicitly incorporated into the user program.

HelpManualV4.doc LAUR-98-4531

Page 44 of 86, 1/13/99

The following sections contain, in alphabetical order, the descriptions for all user subroutines and
functions. A logical ordering and example of how they are likely to be used can be found elsewhere. The
routines BCTDSK, DGTPRM, and TCTDSK do not exist in this implementation of the test package.

Retrieval of Block Counters - Subroutine BCTCOR

CALL BCTCOR (FIRST, LAST, COUNTS, IERR)

FIRST = Lowest block number (I*4-input)

LAST = Highest block number (I*4-input)

COUNTS = Block counters (I*4 array-output)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

= -2,2049 illegal block number

This subroutine can be used to retrieve the (I*4) counters for one or several blocks of tests. The possible
error conditions will be that a specified block number is unreasonable (< 1 or > NumberOfTestBlocks or
undefined).

Retrieval of Test Counters - Subroutine TCTCOR

CALL TCTCOR (FIRST, LAST, COUNT, IERR)

FIRST = Lowest test number to be gotten (I*4 - input)

LAST = Highest test number to be gotten (I*4 - input)

COUNTS = Test counters (I*4 array-output)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

= -2,2049 illegal test number

This subroutine can be used to retrieve the values (I*4) of one or several test counters. The possible error
conditions will be that a specified test number is unreasonable (< 1 or > NumberOfTests). At this time, the
subroutine does not check to see whether the specified test was actually defined in the Test Descriptor File.

Retrieve Test Parameters - Subroutine TGTPRM

CALL TGTPRM (IARRAY, IERR)

IARRAY = 24 element array (I*4-output)

IARRAY (4) = NumberOfTests

IARRAY (5) = NumberOfTestBlocks

IARRAY (6) = NumberOfTestGates

IARRAY (7) = NumberOfTestBoxes

Other entries are zero.

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

HelpManualV4.doc LAUR-98-4531

Page 45 of 86, 1/13/99

This array includes such information as the maximum number of tests, blocks, etc. It is probably most
useful for determining the maximum number of tests and blocks for purposes of setting DO LOOP limits
for retrieving counters.

Clearing Test Result Flags - Subroutines TSCLFB & TSCLFA

CALL TSCLFB (NBLOCK, IERR)

CALL TSCLFA (IERR)

NBLOCK = the block number (I*4-input)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

= -2,2049 illegal block number

= -4,2049 Test not defined

Prior to executing a given BLOCK of tests for each event, it is necessary to set the Test Result Flags for
those tests to .FALSE. The reason this is done in a separate subroutine rather than as each test is executed
is to provide the capability of skipping certain blocks of tests while maintaining the condition that tests not
yet performed for a given event are .FALSE.

The subroutines will allow the user to specify either a specific block number for which the test result flags
are to be zeroed (TSCLFB), or he may specify that the flags for all blocks are to be zeroed (TSCLFA).
Since it is substantially faster, the latter mode will likely be used in all experiments except those which are
passing information from one event processor to another.

The only error conditions will be that the specified block or test has not been defined. These conditions
will return error codes to the calling routine. No error message will be printed.

Test Execution Subroutine TSTEXE

CALL TSTEXE (NBLOCK, IARUSR, IERR)

NBLOCK = block number of tests (I*4-input)

IARUSR = array of data words to be tested (I*2, I*4, R*4, or R*8 input)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR(2) below

= 1,2049 success no errors

= -2,2049 illegal block number

= -4,2049 database is garbage

= -5,2049 bad indirect gate or box

All tests are performed in groups called BLOCKS. Each block of tests will be performed in response to a
single call to the subroutine TSTEXE. The only error checking performed by TSTEXE prior to execution
of the tests will be that the specified block has been defined. Error codes will be returned for each of these
conditions, but no error message will be issued. It will be up to the user to issue an error message in this
case. One fatal and, unfortunately, undetectable run time error is possible. This would occur if the Test
Descriptor File specified an unreasonably large index for a data word to be tested via an Arithmetic test. In
such a case, it is possible that the implied data word would lie outside the program address space and
attempting to access it would cause a fatal memory access violation. Unfortunately, it is not possible to
protect against such errors. An attempt to prevent this is made by checking the index against the parameter
qMaxIndex, which is currently set to 100,000.

HelpManualV4.doc LAUR-98-4531

Page 46 of 86, 1/13/99

A potential source of difficulty is that no check is made as to whether or not a given block of tests is
executed more than once for a given event. If this happens, counters for all tests which are .TRUE. will be
incremented each time, and the test result flags will contain the logical .OR. of both calls unless TSCLFA
or TSCLFB is called before each call to TSTEXE. Since executing a given block of tests more than once
for a given event produces inconsistent test results, the procedure is strongly discouraged.

To have a common call for TSTEXE independent for block variable type, there are actually four versions of
TSTEXE. They are TstExeI2, TstExeI4, TstExeR4, and TstExeR8. The interface statement for TSTEXE
defines an overloaded interface that depends on the block variable type.

Subroutine TSTINI

CALL TSTINI (IERR)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

Subroutine TSTINI is a null program.

Subroutine TSTMAP

CALL TSTMAP (IERR)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

Subroutine TSTMAP is a null program.

User Test Control - Subroutine TSTSET

CALL TSTSET (NTEST, LVALUE, IERR) (internal only)

NTEST = Test Number (I*4-input)

LVALUE = Logical value (L*1-input)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

= -2,2049 illegal test number

In order to accommodate the concept of a "User Test" into the test package, it is necessary to allow the user
to specify the status of such a test. This is done through the subroutine TSTSET. It should be noted that
TSTSET does not immediately cause the value of the appropriate Test Result Flag to be set to the value
indicated nor does it increment the Test Counter. These two operations only happen at the time TSTEXE
is executed for the BLOCK containing that USER TEST. It should also be noted that calling TSCLFA or
TSCLFB for the BLOCK containing a USER TEST will set that Test Result Flag to .FALSE.
invalidating any previous calls to TSTSET. TSTSET will have no effect on the Test Result Flag value
unless that test has been defined as a USER TEST in the Test Descriptor File. Thus, an understanding
must be reached between the programmer and the person who writes the Test File as to what test numbers
will be USER TESTS.

The only error conditions will be that the test number specified was unreasonable (= 0 or >
NumberOfTests). In particular, the user WILL NOT be notified if he uses TSTSET on a Non-(User Test),
since this will not affect the result. A negative test number store the inverse value for the test.

HelpManualV4.doc LAUR-98-4531

Page 47 of 86, 1/13/99

Examination of Test Results - Function TSTVAL

IRSLT = TSTVAL (NTEST, IERR)

NTEST = Test number (I*4-input)

IRSLT = Test flag status (L*4-output)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

= -2,2049 illegal test number

Note IRSLT must be declared LOGICAL*4 in the calling program. TSTVAL is typed in the interface
statements for the test package.

In order to allow the user to control the program flow based on test results, it is necessary to have a means
of examining the results of a given test. While the user could do his own examination of the database
directly, it is useful to provide a logical function for this purpose. The user specifies a test number
(NTEST) and is returned a LOGICAL result (.TRUE. or .FALSE.) and an error flag. The test number may
be positive, in which case IRSLT contains the present value of the specified test result flag. The test
number may be preceded by a minus sign, in which case IRSLT contains the logical complement of the
test flag value. Finally, the test number may be zero, in which case IRSLT is always .TRUE. This usage
is consistent with that for specifying tests to be used in conjunction with histograms.

The error flag would only indicate whether the test number given was greater than the maximum allowable
test number specified at initialization time. Note that a test not yet performed is considered to be .FALSE.
No check is made on whether or not the specified test has actually been defined.

Zeroing Of Test Counters - Subroutines TSZERB and TSZERA

CALL TSZERB (NBLK, IERR)

CALL TSZERA (IERR)

NBLK = Block number (I*4-input)

IERR = Error code (2 word I*4 array-output)

Error codes given as IERR (1), IERR (2) below

= 1,2049 success no errors

= -2,2049 illegal block number

These subroutines are used to zero the test and block counters either for a specified block (TSZERB) or for
all tests and blocks (TSZERA). The latter mode (TSZERA) is likely to be the most common usage.
These subroutines can be called both from within the program executing the tests or from programs such as
those related to starting a new run. The error conditions would be that the specified block has not been
defined (TSZERB only).

Test Package Data Architecture

Test Package Data Base

Note: the following is only valid for Version 2 of PC DAQ and beyond. The test package database is stored
as a collection of class object in VB and as arrays of user defined variables in FORTRAN. The properties of
the VB classes are defined so that the data is always retrieved or stored in the FORTRAN arrays without
any other coding intervention. This insures that the VB values are always in sync with the FORTRAN
arrays. There are four class objects. They are cTest, cBlock, cGate, and cBox. For each class object, there
is a corresponding class collection object. The property of each class object as two components. The string
component has the name of the object and which machine it was created on. The numeric component

HelpManualV4.doc LAUR-98-4531

Page 48 of 86, 1/13/99

contains the test definition, value, and count information. Only the numeric information is stored in the
FORTRAN arrays. The code below is the VB definition of the data structures. The FORTRAN has similar
type structures defined.

Each of the four classes uses the same type structure to define its string components.
 Type TestLabels
 ShortName As String ' Test Name
 MachineName As String ' Machine the Test was created on
 End Type

The Test definition is:
 Type TestInfo
 Deleted As Long ' Deleted flag. <> 0 means ignore test
 Negation As Long ' Report NOT of test
 Block As Long ' Block that the test is in
 Count As Long ' Count of valid tests
 TestType As Long ' Test type (ie, AND, OR, etc.)
 Value As Long ' Value of last test (0 or 1)
 NumParameters As Long ' Number of parameters in test
 Parameters(1 To NumberOfTestParameters) As Double ' Parameter values
 Created As Date ' Creation date and time for object
 CollectionIndex As Long ' Index of Test in collection (test number)
 End Type

The Block definition is:
 Type TestBlockInfo
 Deleted As Long ' Deleted flag. <> 0 means ignore test
 Count As Long ' Count of valid tests
 FirstTest As Long ' Index to qTestOrder of first index
 LastTest As Long ' Index in qTestOrder of last index
 Created As Date ' Creation date and time for object
 CollectionIndex As Long ' Index of Test in collection (test number)
 VariableType As Long ' Variable type (from calls to tst...)
 End Type

The Indirect Gate definition is:
 Type TestGateInfo
 Deleted As Long ' Deleted flag. <> 0 means ignore test
 Count As Long ' Count of valid tests
 Index As Long ' Index in array of number to test
 HistPointer As Long ' Histogram pointer
 Low As Double ' Low value of gate
 High As Double ' High value of gate
 Created As Date ' Creation date and time for object
 CollectionIndex As Long ' Index of Test in collection (test number)
 End Type
 Public Const SIZEOFTESTGATE As Long = 5 * 4 + 3 * 8

The Indirect Box definition is:
 Type TestBoxInfo
 Deleted As Long ' Deleted flag. <> 0 means ignore test
 Count As Long ' Count of valid tests
 XIndex As Long ' X Index in array of number to test
 YIndex As Long ' Y Index in array of number to test
 HistPointer As Long ' Histogram pointer
 XLow As Double ' X Low value of gate
 XHigh As Double ' X High value of gate
 YLow As Double ' Y Low value of gate
 YHigh As Double ' Y High value of gate
 Created As Date ' Creation date and time for object

HelpManualV4.doc LAUR-98-4531

Page 49 of 86, 1/13/99

 CollectionIndex As Long ' Index of Test in collection (test number)
 End Type

Test Data File

The contents of the test package are automatically dumped to disk as part of the data file at the beginning
and end of a run. You can retrieve test scripts and values using standard replay retrieval methods. You can
also dump/print/view the test values using the Test Screen.

Example of How to Use the Test Package

The following example illustrates how one might incorporate the test package into an analyzer. This would
typically be done in three separate phases. Phase one would normally be executed at the start of each run
and would be used to zero out all test and block counters. The second phase would be involved in the
analysis of each event. In this phase, one would clear out previous values for the test result flags, set any
logical values for user tests, execute various blocks of tests, and examine the latest results of the tests just
executed. The final phase would typically be performed after a run was completed. In it, one would likely
retrieve the values of the Test and Block counters for the run just completed.

Phase One - Zeroing Test and Block Counters.
C
C This section would typically be executed at the start of each
C run. If used within PC DAQ data acquisition or replay
C system, this would likely be placed in auxiliary
C programs QRU1 and XRU1 or the uBegOfRunCall code of an analyzer.
C

Include `qTestPackage.fi
Include `qTestPackageImport.fi
INTEGER*4 IERR(2) !Status Return

C
CALL TSZERA (IERR) !zero out all test and block counters
IF (IERR(1) .NE. 1) then !List if error occurs

Error response code
end if

C
C Here you would do other things you might do at the start of a run
C such as zeroing out scalars.
C
C THIS COMPLETES THE FIRST PHASE.
C

Phase Two - Test Execution

 This code would normally be executed once for each event.

Include ‘qTestPackage.fi’
Include ‘qTestPackageImport.fi’
INTEGER*4 IDW(100) !Data array to be tested
INTEGER*4 IERR(2) !Status return

C
CALL TSCLFA(IERR) !Zero out all test result flags
IF (IERR(1) .NE. 1) then !List if error occurs

Error response code
end if

C

HelpManualV4.doc LAUR-98-4531

Page 50 of 86, 1/13/99

CALL TSTSET(10,.TRUE.,IERR) !Preset Test 10 result = .TRUE.
C
C Note that the value of test 10 does not actually become .TRUE.
C until test 10 (which must also be a USER Test) is
C executed as a result of a call to TSTEXE.
C

IF (IERR(1) .NE. 1) then !List if error occurs
Error response code

end if
C

CALL TSTEXE(1,IDW,IERR) !Execute Block 1 of tests
IF (IERR(1) .NE. 1) then !List if error occurs

Error response code
end if

C
IF (TSTVAL(-10,IERR))GO TO 100 !Skip to 100 if test 10=.FALSE.

C
C This would be code you want to skip if test 10 is .FALSE.
C
100 CONTINUE

IF (IERR(1) .NE. 1) then !List if error occurs
Error response code

end if
C
C THIS ENDS SECOND PHASE.
C

Phase Three - Retrieving Counters

This code would normally be executed after a run is complete. It could perhaps be performed within the
analyzer in response to uEndOfRunCall.

Include `qTestPackage.fi
Include `qTestPackageImport.fi
INTEGER*4 IERR(2) !Status return
INTEGER*4 TCNT(NumberOfTests) !Array to hold test counters
INTEGER*4 BCNT(NumberOfTestBlocks) !Array to hold block counters
INTEGER*4 TPARAM(24) !Array for Test Parameters

C
IF (IERR(1).NE.1) GO TO 100
CALL TGTPRM(TPARAM,IERR) !Get test data base parameters
IF (IERR(1) .NE. 1) then !List if error occurs

Error response code
end if
IF (IERR(1).NE.1) GO TO 100

C
CALL TCTCOR(1,NumberOfTests,TCNT,IERR) !Get test counters
CALL BCTCOR(1,NumberOfTestBlocks,BCNT,IERR) !Get Block counters

C
C You may now do whatever calculations you want using the values of
C the Test and Block counters.
C
C Note that if you simply want a list of the values this is a waste
C of effort, since program TPR provides that function.
C
C
100 CONTINUE

HelpManualV4.doc LAUR-98-4531

Page 51 of 86, 1/13/99

C
C THIS ENDS PHASE 3.

Setting up Indirect Gates and Boxes

It is possible to set the values for the data word indices and limits for indirect gates and boxes from within
plot display program. The determination of whether you are referring to a gate or a box is taken from
whether a one-parameter or a two-parameter histogram is being displayed.

Indirect Gates and Boxes are interactively defined using the Zoom function for plots. The steps involved
are:

• Display a graph/plot that shows the variable(s) on which you want to define a cut.

• Be sure the graph has the focus.

• Use the Plot / Pick Zoom/Gate… menu option to pick which plot on the graph to use.

• Use the Plot / Gate/Box… menu option to define a gate. The program will ask for a gate (box)
number. Give it the appropriate number. Then use the mouse zoom to define a region on the plot.
Click one extreme of your choice and, holding the left button down, drag the definition box to the
other extreme. Then lift up on the mouse button. That is it. You can view or alter the results by
looking at the gate (box) on the edit form. Note, the program will check that the variable you have
plotted is in the same system block as other tests in the block that has a test that refers to you new
gate.

HelpManualV4.doc LAUR-98-4531

Page 52 of 86, 1/13/99

System Requirements

Computer

High speed Pentium or Pentium Pro. The faster, the better. It will work on 486's, but only at a walk.

64 megabytes of RAM minimum.

>1 GB disk

CD-ROM.

High-end graphics card (support for 64K colors at high resolution).

Network card. I am putting 3COM 100base-TX cards on my computers.

GPIB or other DAQ hardware interface.

System

Windows 95®, Windows NT 4.0® with SP3 or later, or above. I recommend NT, but you need to check
what hardware is on your computer. Windows NT is somewhat more restrictive about what it can use.
Plug 'n Play is only supported by Windows 95 at this time. Trials with Win 95/98 have been very
limited. This program has been used in DAQ mode only on NT machines. Replay has been demonstrated
on both Windows 95® and Windows NT®

Software

You must have FORTRAN to write CAMAC and analysis code. Visual Basic is needed only if you want
to be able to change control code. C++ is not currently used. I will shortly (as of 10/98) be upgrading to
the Visual Studio 6 version of the languages.

DEC Visual Fortran 5.0. Note, code from the Numerical Recipes books in included.

MS Visual Basic 5.0. Enterprise edition

MS Visual C++ 5.0. Enterprise edition

MS Office 97. EXCEL is useful to analyze plots and is used by the variable management tool.

If you are buying new licenses for many of the above items, it may be cheaper to buy Microsoft Developer
Network Universal Subscription. This has the system, C++, VB, and Office with lots more. Quarterly
updates. No paper manuals, it is all on the CDs. $2500.

CAMAC Interface

The following can read CAMAC at >400 KB/s in DMA mode (ex., FERA Memory module). Single
CAMAC reads are much slower. For single reads, 1 kHz on a 166 MHz Pentium is possible. Block reads
of ADCs and TDCs can speed things up. DMA speeds are nearly independent of CPU speeds. Single reads
scale as CPU speed.

National Instrument AT-GPIB/TNT card and driver (part 776836-01) with NT software. Also
available with Windows 95 drivers. Cost: 500

Kinetics Systems GPIB Crate Controller. 3988-G3A. Cost: 2696.42. Note, this can be a long lead
time item.

LAMPF Event Trigger Module.

HelpManualV4.doc LAUR-98-4531

Page 53 of 86, 1/13/99

Tape

I use a 4mm DAT drive on a SCSI controller to write to tape. Taping is done as a periodic backup of the
disk. That is because Windows only handles tapes as backup devices.

Tape drive. 4mm DAT seems to work fine. If you need to push the 400Kb/s limit, a fast tape/disk
technology should be considered.

SCSI adapter if not already represent. Note, all adapters are not compatible. Compare tape and
adapter specs. If only used for taping, a low end SCSI-2 adapter is good enough.

Backup software. I use Seagate Backup Exec (formally Arcada). You might get by with the backup
software that comes with NT.

HelpManualV4.doc LAUR-98-4531

Page 54 of 86, 1/13/99

Format Standards for PC DAQ

Format Standards

This section describes various format standards for the PC DAQ system. The first section describes
“ scripts .” A script is an ASCII command file providing control information. The next section describes the
database . The last section describes the output format .

Blocks are data arrays. Up to 40 blocks can be defined for histogramming purposes. Only three are
predefined. They are the “System Blocks.” The first block is a large 16-bit integer array [IntegerData ()].
The second is a 32-bit single precision real array [SingleData ()]. The third is a 32-bit integer array
[LongData ()]. Definition and use of other blocks is the user’s responsibility. There is a NULL data value
defined for each system block. At the beginning of every run (or batch of runs if in auto restart or replay
batch mode), the system blocks are cleared to the NULL value before any user routines are called. NULL
data is not displayed or histogrammed. It is written to “tape” if present.

Scripts

Scripts are ASCII control files. They currently are limited to 64K bytes apiece. There are many kinds of
scripts. They include:

1. Retrieving Scripts

2. Run Control [RunControl]

3. Labels [Labels]

4. Histograms [Histograms] and [Ahistograms]

Time Series: name /switches

1-D and 2_D frequency plots: name /switches

5. Tests [Test]

6. Plots [Plot]

7. Graphs [Graph]

8. Comments [Comment]

9. End of File [EOF]

Scripts have certain things in common

Identifier line. This is a string enclosed in brackets such as [RunControl]. Only the first three letters are
used to identify a script.

Variable reset. Starting a command section usually resets all variables defined by that section to some
default value. For example, a new histogram script [HIST] automatically erases all previously defined
histograms. The [AHI] command does not reset the histogram list, but rather appends histograms to the
existing list.

Comment lines begin with a “;” in column 1. Inline comments start with a “!”.

Case insensitive command lines.

Names, such as Histograms names, preserve case. If you need to put a special character (;!/:) in a
name, enclose the name in double quotes.

Special characters are available for histogram names. Upper and lower case and Greek characters may
be drawn (see the Tedi manual or appendix I of the plasma physics plotting package manual.) as
in Tedi. A "second" font character is specified by preceding its "first" font equivalent with an \.

HelpManualV4.doc LAUR-98-4531

Page 55 of 86, 1/13/99

The ^ character moves everything that follows up 1/2 space while the _ character lowers
everything that follows by 1/2 a space. The $ character causes a backspace. The @ character
specifies that one of these special characters is to be the actual character rather than a flag. Thus
to obtain an alpha use the string '\a' and to obtain an \ use the string '@\'. To obtain a
superscript 2 use either '\2' (small) or'^2_' (full size). Note: one must use '@@' to obtain an
actual @ character.

Switches force special actions to be taken. The general format of a switch is:

/SWitch:val1:val2:...:valn

The delimiting slash and the two (sometimes one) characters must be given if the switch is given
at all. The following characters may be appended for clarity but are not required. For example,
histogram scripts has a switch "/Event" which specifies which event goes with a histograms.

/Ev:13

/Eve:13

/Event:13

all work

The quantities "valj" are input values. They may be numbers or alphanumeric strings. The values
must be separated by colons as shown. The number and type of values required are described with
each switch. Except where noted, numeric values are decimal integers.

Some switches have defined inverses. These are denoted by placing a minus sign between the
slash and the first character. For example, if "/LO" means "write output," "/-LO" means "do not
write output."

Optional Values. In the descriptions that follow, items in square brackets are optional.

Scripts can all be in one file, or in separate files. Using separate files for each script type is recommended.
For each script type, there is an edit control form. Each form has “Generate Script” button. Clicking this
button will generate an example script describing the current setup into the "Replay Script" text box.

Automatic scripts recall . When you start PC DAQ, it will automatically reload any control (non-plot)
scripts that were open when the program was last terminated. It will then ask you if you want to run them
immediately. Finally, it will ask you if you want the run control started. This will reduce the number of
mouse clicks to start the program from about ten to two. It also makes the "separate files" method of script
management mentioned above easier to handle. Also, when windows are minimized, an easier to read
caption will be displayed.

Retrieving Scripts

At the beginning of every output file is a section of data that contains all the script information used to
control that run. This includes the run controls, labels, histograms, and test definitions. To see what those
values were, the easiest procedure is to do:

Execute normal scripts. Read in and execute your normal scripts for the file in questions.

Change Replay Options. Under the menu “Options,” chose Replay… . This will bring up the
Replay options control. Click off the box Data. This will turn off data reads. Then click on
Labels, Histogram Definitions, Controls, and Test Definitions.

Run the file. Pick your replay file and run it. After you see the current file position moving, hit the
stop.

Generate scripts. The program will have already dumped the run controls to the Replay Script form.
To generate the other scripts, go to the menu “Options / Labels…” . This will bring up the
label definition form. At the bottom of the form is a Generate Script button. Click it, and a
[Label] section will be appended to the Replay Script form. Do the same for Histograms and

HelpManualV4.doc LAUR-98-4531

Page 56 of 86, 1/13/99

Tests. You have now regenerated the original script! If you want to reuse this, cut and paste this
to another script form and modify as desired.

Run Control [RunControl]

Run control is used to set the enable flags for run control and events. It uses a Windows INI like format
(descriptor =[value [, value [, …]]]). For Yes/no values, only the first letter is examined. The following are
equivalent values for “Yes” = {y | Y | t | T | 1 | x | X}. Anything else is a NO. Most of these commands
are illegal when a run is in progress. Some require that you “Disconnect” before using. Items in square
brackets are optional.

This information is saved at the beginning of each run in the control section if output is enabled. If the
input is from DAQ, the replay control values are not dumped. If the input is a disk file, the CAMAC
control functions are not dumped. Included in this data are the machine name, the user’s account, and the
PC DAQ VB code version numbers, which are not definable by the user.

See Retrieving Scripts for details on how to view script information written to disk.

Defined commands are:

AllowRemote[= flag] :: Allow remote users. Unspecified default is no.

ClearTestsBeginOfBatch [= flag] :: Clear all test blocks at the begin of a batch of runs. Unspecified
value is no.

ClearTestsBeginOfRun [= flag] :: Clear all test blocks at the begin of a run. Unspecified value is
no.

CAMACTriggerType = nn :: Type of CAMAC module that is generating trigger. 1 is LAMPF
trigger module and is the default.

CrateEnable = crate,GPIB address :: Enable crate at given GPIB address. Valid crate numbers are
1 through 7.

DatabaseEnable [= flag]:: If flag is yes, use database files for calibration and definitions. Unspecified
value is yes.

DatabasePath [= path] :: Path for database files. The default path is “..\Databasefiles”.

DatabaseFile = nn,filename :: Define file names for database files. Up to seven files maybe defined.

EventModule = crate, slot :: Crate and slot of (LAMPF) Event Trigger Module.

HistEnable = block[,autofill] :: Block = enable histograms for block number “block”. The first
three blocks are the system blocks. For the system blocks only, autofill = yes tells the control
program to do the incrementing if the data does not equal the NULL data value.

HistSave = [-]block ::. Save histograms for block “block” at end of run. Leading minus means do
not save.

IssueCZ [= flag]:: If flag is yes, issue a C and Z to all CAMAC crates at initialization time.
Unspecified value is no.

LogEnable [= flag] :: If flag is yes, write data to tape. Applies to both DAQ and Replay runs.
Unspecified value is no.

OutputPath[= path] :: Path for output files. The default path is “..\Outputfiles”.

ReadQX [= flag]:: If flag is yes, return Q and X for every FCNA command. Unspecified value is no.

ReplayControl = flag :: If Flag = yes, then the control settings in the replay file are written to the
replay script file. Otherwise they are ignored, as by definition, a run is in progress. To use the
control setting, you need to save the replay script to a file, then start a new run with this as the
command script. Be sure you set the ReplayFlag command to yes and the ReplayType to P in
the new script.

ReplayFile = filename :: Name for replay file. If no path given, use ReplayPath.

HelpManualV4.doc LAUR-98-4531

Page 57 of 86, 1/13/99

ReplayFlag[= flag] :: If flag is yes, the run is replay; if MC, then it is Monte Carlo; if SM, then it
is Sample Mode; else the run is DAQ.

ReplayHistBeginDef [= flag] :: If Flag = yes, then histogram definition information is taken from
the beginning of the replay file. Any histogram definition information that had been read in from
a script is ignored. All histogram data is lost. Unspecified value is no.

ReplayHistEndDef [= flag] :: If Flag = yes, then histogram definition information is taken from the
end of the replay file. Any histogram definition information that had been read in from a script is
ignored. All histogram data is lost. Unspecified value is no.

ReplayHistData [= flag]:: If Flag = yes, then histogram data information is taken from the replay
file. Any previous histogram data or definitions are lost. This flag is automatically set if the file
extension is “.hsv”. Unspecified value is no.

ReplayLabels [= flag] :: If Flag = yes, then label definition information is taken from the replay file.
Any label information that had been read in from a script is ignored. Unspecified value is no.

ReplayPath[= path] :: Path for replay files. The default path is “..\Outputfiles”.

ReplayResetHistDef [= flag] :: If Flag = yes, then the histogram definition list is reset before
reading in histogram information from the replay file. Set this = n if you want to merge your
script histogram list with histograms in an HSV or replay file. Unspecified value is no.

ReplayTestDef[= flag] :: If Flag = yes, then test definition and count information at the beginning of
a run is taken from the replay file. Any test information that had been read in from a script is
ignored. Unspecified value is no.

ReplayTestDump [= flag] :: If Flag = yes, then test definition and count information at the end of
run is taken from the replay file. Any test information that had been read in from a script is
ignored. Unspecified value is no.

ReplayType[= type] :: Type of replay file. P or none means PC DAQ format. E means MEGA
EMS. Q means VMS Q.

Restart[= interval] :: If interval present, then enable automatic restart of DAQ runs after a fixed time
interval (units are minutes). If interval not present, disable automatic restart.

Title = Comment :: Run title.

GENERAL PERMITS FOR EVENTS

BeginEvent = nn[,Title] :: Begin a new event with event number nn. This is required for every event.
Must be the first line for each new event. Note, if you use a number higher than 24, you will need to
extend the Select statement in Analysis.for and create new Analxx.for routines. The maximum
number is set by the NumberOfEvents parameter in PCDAQBuffers.fi. Talk to the author if you need
to go above 99. Event 0 is defines the global permit for a given action. Title gives a name to the
event. The default title is “Event nn” for a specific event, “Global” for the global event. A user
supplied global event title is ignored.

EndEvent :: Finished definition of a single event.

AsynchRead = flag,[ErrSuspend, [TimeOut, [PollTime]] :: Enable asynchronous reads if flag is yes.
TimeOut is the time to wait before declaring failure. PollTime is the time between checks of the
completion flag. Times are in seconds. The default is AsyncRead = no,no,1,0.1. The run loop
continues until the complete flag is turned on or the read times out. If it does not complete and
ErrSupend is yes, then the run will be suspended. If ErrSupsend = no, the program will continue
without an error message and will continue to poll until the end of the run, but with a polling interval
of TimeOut instead of PollTime. When it does complete, the analysis routines will be called. This
parameter is not meaningful for the global event.

ClearHistBatch [= flag] :: If flag is yes, then at the beginning of every batch of runs, all histograms
associated with this event are cleared. The unspecified default is yes for both global and specific
events. Both the global and the specific event must be true for a clear to be done. If all defined events
are set to clear, then all histograms are cleared, even if they are associated with undefined events.

HelpManualV4.doc LAUR-98-4531

Page 58 of 86, 1/13/99

Defined means that a BeginEvent exists for the event in the script. Automatic histogramming must
also be enabled.

ClearHistRun [= flag] :: If flag is yes, then at the beginning of every run, all histograms associated
with this event are cleared. The unspecified default is no for specific events, yes for the global event.
Both the global and the specific event must be true for a clear to be done. If all defined events are set
to clear, then all histograms are cleared, even if they are associated with undefined events. Defined
means that a BeginEvent exists for the event in the script. Automatic histogramming must also be
enabled.

Display = flag,TestNumber[,Suspend] :: Automatic update of single event displays. Flag enables
automatic display updates. Test number is the number of the test that must be true for the display to
update. Suspend tells whether the run should be suspended when the update is done. Default value is
Display=n,x,n. Not meaningful for the global event.

DumpControl [= flag] :: If Flag = yes, then the control settings in the replay file are written to the
replay script file for this event. The DumpControl flag for the global event and ReplayControl must
also be set before this will have an effect. Default value is yes.

EndOfRunTrigger [= flag] :: If flag is yes, then an event trigger is generated by a normal end of run
command (either rollover or manual). Default is no for both global and specific events.

MayProcess = interval :: If must process is not set, every (interval)th trigger is analyzed. Default
interval is 1. Only directly effects events that are hardware triggered. Once a hardware trigger is sent
for analysis, all software-triggered events associated with it are automatically called. For analysis
programs that use the recursion feature, may process means that a recursion request will be ignored if
new data is available if in DAQ mode. In replay mode, once analysis is begun, it continues until all
recursion requests are handled. Not meaningful for the global event.

MustProcess [= flag] :: If flag is set, event is must process. Every event is analyzed. For analysis
programs that use the recursion feature, must process means that a recursion request will be honored
even if new data is available. Default is yes. Not meaningful for the global event.

RefreshLimit = nn :: The number of times the input is checked for data between scans for user control
changes (i.e., mouse clicks). Default is 10 for both global and specific events. The lesser of the global
and specific event values are used.

SaveHistBatch [= flag] :: If flag is yes, then at the end of every batch of runs, all histograms associated
with this event are saved. Default is yes for both global and specific events. Both global and specific
events must be true for save to be done. If all defined events are set to save, then all histograms are
saved, even if they are associated with undefined events.

SaveHistRun [= flag] :: If flag is yes, then at the end of every run, all histograms associated with this
event are saved. Default is yes for both global and specific events. Both global and specific events
must be true for save to be done. If all defined events are set to save, then all histograms are saved,
even if they are associated with undefined events.

Source = source :: Source = trigger source. 0 = means hardware (CAMAC or Replay input data),
otherwise it is a software trigger initiated by the “source” event number. Default is zero for both
global and specific events. Not meaningful for the global event.

Suspend = flag,TestNumber :: If flag is yes, then the run will automatically suspend when the test
becomes true. Default is flag=false. Not meaningful for the global event.

TimeTrigger = flag[,Interval] :: Enable a trigger that runs at a fixed interval. Interval is in seconds.
Default is TimeTrigger=n,60. The time is not meaningful for the global event.

UpdatePlotBatch [= flag] :: If flag is yes, then at the end of every batch of runs, all plots associated
with this event are updated on the screen. Default is yes for both global and specific events. Both
global and specific events must be true for update to be done. If all defined events are set to update,
then all histogram plots are updated, even if they are associated with undefined events. Event
association is through the histograms in the plot.

UpdatePlotRun [= flag]:: If flag is yes, then at the end of every run, all plots associated with this
event are updated on the screen. Default is yes for both global and specific events. Both global and

HelpManualV4.doc LAUR-98-4531

Page 59 of 86, 1/13/99

specific events must be true for update to be done. If all defined events are set to update, then all
histogram plots are updated, even if they are associated with undefined events. Event association is
through the histograms in the plot.

DEFAULTS:

Table 1, General Event Defaults

Name Global
Default

Specifi
c

Default

Asynchronous Error Suspend n

Asynchronous Polling Time (s) 0.1

Asynchronous Read Enable n

Asynchronous Time Out (s) 1

ClearHistsBatch y y

ClearHistsRun y n

Display Enable n

Display Suspend n

Display Test Number 0

Dump Control n y

May Interval 1

Must Process y

Refresh Limit 10 10

SaveHistsBatch y y

SaveHistsRun y y

Title Global Event n

Suspend Test Enable n

Suspend Test Number 0

UpdatePlotsBatch y y

UpdatePlotsRun y y

DETAILED PERMITS FOR EVENTS

EventEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, the event is enabled. Detail breakdown by
function can be defined. See later explanation of details.

UserEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, calls to the user analysis program ANALnn
during data taking are enabled. See later explanation of details. The following parameters control the
calling of the ANALnn as follows:

Table 2, Permits for Calls to Analnn

Permit Parameter Mnemonic Value Comment

HelpManualV4.doc LAUR-98-4531

Page 60 of 86, 1/13/99

UserEnable DN uNewCall 0 Data has changed to new values

UserEnable DL uRecursiveCall 1 Analysis is being called again

UserEnable BR uBegOfRunCall 2 Analysis is being called at start of run

UserEnable ER uEndOfRunCall 3 Analysis is being called at end of run

UserEnable DC uClearCall 4 Analysis is being called at end of analysis loop

CamacEnable DR uGetTrigger (Fortran) 5 Analysis is being called to get raw Data

VBEnable HT uGetTrigger (VB) 5 Scan Active X servers for trigger

MCEnable DR uGetMonteCarlo
(Fortran only)

6 Generate Monte Carlo Data

UserEnable BS uBegOfSessionCall 7 Analysis is being called at start of session

UserEnable ES uEndOfSessionCall 8 Analysis is being called at end of session

UserEnable BB uBegOfBatchCall 9 Analysis is being called at start of batch

UserEnable EB uEndOfBatchCall 10 Analysis is being called at end of batch

UserWrite BS uBegOfSessionWrite 11 User write is being called at start of session

UserWrite ES uEndOfSessionWrite 12 User write is being called at end of session

UserWrite BB uBegOfBatchWrite 13 User write is being called at start of batch

UserWrite EB uEndOfBatchWrite 14 User write is being called at end of batch

UserWrite BR uBegOfRunWrite 15 User write is being called at start of run

UserWrite ER uEndOfRunWrite 16 User write is being called at end of run

UserWrite DW uDataWrite (Fortran) 17 User write is being called at end of each event
analysis

VBEnable DW uDataWrite (VB) 17 Write data to Active X Servers in replay mode
at the end of the analysis

UserRead BS uBegOfSessionRead 18 User Read is being called at start of session

UserRead ES uEndOfSessionRead 19 User Read is being called at end of session

UserRead BB uBegOfBatchRead 20 User Read is being called at start of batch

UserRead EB uEndOfBatchRead 21 User Read is being called at end of batch

UserRead BR uBegOfRunRead 22 User Read is being called at start of run

UserRead ER uEndOfRunRead 23 User Read is being called at end of run

UserRead DR uDataRead (Fortran) 24 User Read is being called at start of analysis

VBEnable DR uDataRead (VB) 24 Get data from Active X Servers. DAQ or Monte
Carlo modes only?

SimpleEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, calls to the simple analysis transformation
programs for the event are enabled. See later explanation of details. Only the DN parameter is used. It
applies to both new and recursive analysis calls.

AutoWrite [= flag[,detail[,detail[,…]]]] :: If flag is yes, automatic output for the event is enabled. See
later explanation of details.

HelpManualV4.doc LAUR-98-4531

Page 61 of 86, 1/13/99

AutoRead [= flag[,detail[,detail[,…]]]] :: If flag is yes, automatic input for the event is enabled. See
later explanation of details.

UserWrite [= flag[,detail[,detail[,…]]]] :: If flag is yes, user output for the event is enabled. See later
explanation of details.

UserRead [= flag[,detail[,detail[,…]]]] :: If flag is yes, user input for the event is enabled. See later
explanation of details.

AutoHist [= flag[,detail[,detail[,…]]]] :: If flag is yes, automatic histogramming for the event is
enabled. See later explanation of details.

UserHist [= flag[,detail[,detail[,…]]]] :: If flag is yes, user histogramming for the event is enabled. See
later explanation of details.

CAMACEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, CAMAC hardware triggers for the event
are enabled. See later explanation of details. HT enables the hardware interrupt device, DR enables the
call to ANALnn(uGetTrigger).

ManualEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, manual triggers for the event are enabled.
Manual trigger buttons are at the bottom of the main control form. See later explanation of details.
Only HT (hardware trigger) has meaning.

VBEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, Visual Basic data and/or triggers for the event
are enabled. See later explanation of details. These VB calls are different from and in addition to the
calls to ANALnn. Typical uses for the parameters are:

BS :: Connect to ActiveX servers. Turn off the servers’ access to GPIB if on the buss as the
CAMAC crate.

ES :: Disconnect from ActiveX server. Turn their access to GPIB back on.

DR :: Get data from an ActiveX server.

DN, DL :: Call an analysis code in written VB.

DW :: Send data to an ActiveX server. Usually called only in replay mode.

DC :: Whatever hits you as useful.

HT :: See if an ActiveX server has raised a trigger flag.

DT :: The same as HT?

MCEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, Monte Carlo triggers for the event are enabled.
See later explanation of details. HT is generated with each pass through the run control loop. DR
calls ANALnn (uGetMonteCarlo) to generate an event.

OtherEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, triggers from another source (to be defined)
for the event are enabled. See later explanation of details. This is supplied to provide for future
expansion either by the user or the great and wise PC DAQ design team.

ReplayEnable [= flag[,detail[,detail[,…]]]] :: If flag is yes, replay triggers for the event are enabled.
See later explanation of details. If Flag = yes, then the event data is read into the appropriate buffers
for enabled events and have a current trigger source of 0 (zero). A “hardware” trigger for the event is
generated for the analysis routines are called once all data for a specific event is read in. Data goes back
into the same locations from which it was written. If may process is selected and the interval is not 1,
analysis will be skipped as appropriate. Once analysis is begun, it will continue until all new
recursion requests are handled. If different events have been written out for the same recursion pass on
tape, each event will generate a separate set of calls to the analysis routines. If the same event occurs
in multiple recursion passes as recorded on tape, then its analysis routine will be called for each
recursion pass in which it occurs. If the current setting for the trigger source is not zero or the event is
not enabled, then the data on tape is ignored (skipped). If the ReplayEnable flag = no, then all data
from that event is ignored. Do this to quickly get to the end of run data or histogram data.

Parameter values mean:

HelpManualV4.doc LAUR-98-4531

Page 62 of 86, 1/13/99

BB, BR :: If the parameter is turned on, then the event begin of batch/run data is read into the
appropriate buffers for enabled events when in replay mode. Note that as this comes after the
actual calls to the begin of batch/run analysis routines, this replay data will overwrite any
information those routines have placed in the system blocks. Data goes back into the same
locations from which it was written.

EB, ER :: If the parameter is turned on, then the event end of batch/run data is read into the
appropriate buffers for enabled events. Note that as this comes before the actual calls to the end of
run analysis routines, this replay data will be overwritten by any information from those routines
placed in the system blocks. Data goes back into the same locations from which it was written.

DR :: Enables reading in of regular data buffer into the data buffers.

HT :: Allows the reading in of data to raise a trigger. Does no raise a trigger for a sub-trigger event
unless DT is also present.

DT :: Overrides the “Source” sub trigger parameter. Instead of being triggered as a sub-trigger, the
event is triggered by replay data being read in.

Permit Detail flags. Each permit can be subdivided into many pieces, each of which controls a different
part of the data taking cycle. Not all parameters are meaningful for all permits. See the table below for
what parameters are defined for which permits and their default values. See the definition of each
permit for clarification of what a parameter means to a given permit. A leading minus sign disables
the step.

• [-]BS :: Begin Session. Actions taken just before hardware connections are made. For instance,
connections to other ActiveX servers by VB programs go here.

• [-]BB :: Before Batch. The beginning of a group of runs. For live data, the start of data taking when
rollover is enabled.

• [-]BR :: Begin Run. The start of each run.

• [-]ES :: End Session. Actions taken just after hardware connections are broken. For instance,
disconnections to other ActiveX servers by VB programs go here.

• [-]EB :: End of Batch. The end of batch of runs.

• [-]ER :: End of Run. The end of each run.

• [-]DR :: Data Read.

• [-]DN :: Data New. Start of new recursive loop.

• [-]DL :: Data Loop. A recursive data analysis call.

• [-]DW :: Data Write.

• [-]DC :: Data Cleanup. Cleanup after an analysis call.

• [-]HT :: Hardware Trigger.

• [-]DT :: Data Trigger.

The following table shows which parameters apply to individual permit types. A gray box means the
parameter has no meaning. The letter “y” or “n” is the default value of the parameter if the permit is not in
the script. If you put the permit name in the script with no values attached, the master (flag) value is
assumed to be true.

HelpManualV4.doc LAUR-98-4531

Page 63 of 86, 1/13/99

Table 3, Permit Defaults

Default
Event E

ve
nt

 E
na

bl
e

U
se

r E
na

bl
e

S
im

pl
e

E
na

bl
e

A
ut

o
W

rit
e

A
ut

o
R

ea
d

U
se

r W
rit

e

U
se

r R
ea

d

A
ut

o
H

is
to

gr
am

m
in

g
U

se
r

H
is

to
gr

am
m

in
g

C
am

ac
 E

na
bl

e

M
an

ua
l E

na
bl

e

V
B

 E
na

bl
e

M
on

te
 C

ar
lo

E

na
bl

e

O
th

er
 E

na
bl

e

R
ep

la
y

D
at

a
E

na
bl

e

Master (flag) n n n y y n n y n n y n n n
Begin Session n n y
Begin Batch y y y y n n y n y
Begin Run y y y y n n y n y
End Run y y y y n n y n y
End Batch y y y y n n y n y
End Session n n y
Data Read y y n y y y y
Data Analysis New y y y n
Data Analysis Recursive y y n
Data Write y y n y n y
Data Clear n n n
HardwareTrigger y y y n y y
DataTrigger n n y
End of Run Trigger n
TimeTrigger n

Labels [Labels]

Labels are used to define the contents of the system blocks . They assign names to locations in the system
blocks, define display formats for the data screen, define simple data transformations, and control the I/O for
the events at the individual variable level. The run must be stopped or suspended for label changes to be
made. Labels with names of the form CAMACnn are used to defined the location of CAMAC I/O buffers for
event nn within the system blocks. Unlike other label defined arrays, CAMAC I/O buffers are considered to
be of variable length w.r.t. I/O operations. Internally, current locations and sizes of CAMAC buffers are
kept separately from other label information. To perform automatic taping from a defined label location for
an event, you must enable both the specific event output flag and the output flag for the variable. A given
label is associated with both a specific event and a specific system block. The best way to generate your
Label command section is with the variable management tool.

See Retrieving Scripts for details on how to view script information written to disk.

Label format: name /switches

/[-]DF :: Use command line to define/undefine defaults. Defines label $default$.

/[-]LO :: Write variable as part of event output buffer. Event output and automatic event output flags
must also be set. Note that for CAMAC buffers, logging to tape only occurs once for a given
trigger. For multiple calls of the event (due to recursion requests), only non-CAMAC variables
are taped for the second and following calls.

/BL:bx :: Block index for label. Only system blocks are valid.

/IN:index[:size] :: Index to system block. Size of array (default = 1). If a CAMAC buffer, size is
maximum allowed size of buffer.

/FO:{I|H|O|B|T|E|n} :: Display format. I = integer, H = hex, O = Octal, B = Binary, T = True/False,
E = Exponential, n = fixed decimal [n digits to the right of decimal]

HelpManualV4.doc LAUR-98-4531

Page 64 of 86, 1/13/99

/EV:event :: Event number associated with label.

/FM:n :: Simple transform to use to generate value for label. 0 = none, 1 = linear transform [value =
offset + slope * input], 2 = first user defined transform (SimpleUser1), 3 = second user defined
transform (SimpleUser2)

/SL:slope :: Slope for linear transform. First parameter for user defined transform.

/OF:offset :: Offset for linear transform. Second parameter for user defined transform.

/IB:block :: Block number of input to simple transforms. Must be a system block.

/II:index :: Index of input to simple transform.

/NA:Comment :: Comment

Histograms [Histograms] and [Ahistograms]

Histogram definitions can be done in two types of sections. When a [HIS] section is encountered, the
program resets the defined histogram list and starts afresh. When a [AHI] section is found, histograms are
appended to the current list of defined histograms.

Time Series: name /switches

/[-]DF :: Use command line to define/undefine defaults. Defines histogram $default$.

/[-]LO :: Write data to tape at end of run. Block save flag must also be set.

/TI :: Histogram is a time series histogram.

/BL:bx :: Block index for histogram input. Only system blocks are valid.

/IN:ix :: Index to block array.

/EV:event :: Event number associated with histogram.

/TE:n:use :: n is the test number to use. If n = 0, the test is ignored. If n is positive, then test n of
the test package must be true for the histogram to be incremented. If n is negative, then test n
must be false. If use = 0, then the test is ignored.

/X:min:max :: Default minimum and maximum histogram values for plot.

/XD:min:max:show :: Limit lines. Min and Max values. Show = 1 means show on plot. The limit
(warning) lines that can be defined in the histogram definition are now drawn on the plot if the
grid control is turned on. Use the "User 1" grid control for the lower limit, the "User 2" control
for the upper limit. See the Grid tab on the Edit Plot form.

/XL:label :: X axis label.

/XP:ix:min:max :: Index to block array. Default minimum and maximum histogram values for plot.

/NA:Legend :: Legend text to use for overlays.

1-D and 2_D frequency plots: name /switches

/[-]DF :: Use command line to define/undefine defaults. Defines histogram $default$.

/[-]LO :: Write data to tape at end of run. Block save flag must also be set.

/-TI :: Histogram is a frequency histogram.

/BL:bx :: Block index for histogram input.

/IN:ix[:iy] :: Index to block array.

/EV:event :: Event number associated with histogram.

/TE:n:use :: Tests. N is test number to use. If use = 0, then the test is not applied.

HelpManualV4.doc LAUR-98-4531

Page 65 of 86, 1/13/99

/MU:nn :: Histogram is a multiple entry histogram if nn > 0. First value at the array index is the
number of entries that follow. nn is the maximum number of entries. Histograms then use nn+1
words in the block.

/BI:nx[:ny] :: Bin size.

/X:min:max :: Minimum and maximum histogram values.

/XD:min:max:show :: Limit lines. Min and Max values. Show = 1 means show on plot. The limit
(warning) lines that can be defined in the histogram definition are now drawn on the plot if the
grid control is turned on. Use the "User 1" grid control for the lower limit, the "User 2" control
for the upper limit. See the Grid tab on the Edit Plot form.

/XL:label :: X axis label.

/XP:ix:min:max:nx :: Index to block array. Minimum and maximum histogram values. Bin Size.

/Y:min:max :: Minimum and maximum histogram values.

/YD:min:max:show :: Limit lines. Min and Max values. Show = 1 means show on plot. The limit
(warning) lines that can be defined in the histogram definition are now drawn on the plot if the
grid control is turned on. Use the "User 1" grid control for the lower limit, the "User 2" control
for the upper limit. See the Grid tab on the Edit Plot form.

/YL:label :: Y axis label.

/YP:ix:min:max :: Index to block array. Minimum and maximum histogram values. Bin Size.

/NA:Legend :: Legend text to use for overlays.

Tests [Test]

Test package. Based on the Q test package document MP-1-3412-3, Rev: March 17, 1986.

/te:n, /bl:n, /ig:n, /ib:n. :: Ignored. Formally used to set maximum number of tests, blocks, gates,
and boxes. Maximums are set as parameters in both VB and FORTRAN codes.

bl,n :: This line is used to define the beginning of the test descriptors for a given block of tests. All
test descriptor lines from this point until the next block delimiter or end of file will be taken as
part of the specified block. N is a block number. It should be noted that this line is NOT in the
/SWitch format.

nn ,type,n1,n2,n3 :: Test definition for test nn. Test type is “type”, allowed values are: Bit, Equal,
Pattern, Gate, Igate, Ibox, AND, IOR, EOR, Majority, and User. N(i) are parameters controlling
the test.

/Gate:ngate[:index:low:high] :: Indirect gate limit definition.

/Box:nbox [:xindex:xlow:xhigh:yindex:ylow:yhigh] :: Indirect box limit definition.

Plots [Plot]

For internal use only. These commands record how a histogram is displayed.

Graphs [Graph]

For internal use only. These commands record how a page of plots is displayed.

Comments [Comment]

Anything can go into here except a section heading (i.e., a line starting with a square left bracket [).

HelpManualV4.doc LAUR-98-4531

Page 66 of 86, 1/13/99

End of File [EOF]

Optional end of file marker. Any data after this is ignored.

HelpManualV4.doc LAUR-98-4531

Page 67 of 86, 1/13/99

Database

The database is a set of ASCII flat files containing constants, geometry definitions, and analysis calibration
values keyed run number. This includes data maps , pedestals , gains , and various other constants needed to
decode and analyzing an event. This database program is adapted from the MEGA database (LAMPF
experiment 969).

Database General

Event 1 is used to read in the database values. At the start of each run, all enabled events are called with the
uBegOfRunCall flag set (see Analysis Hooks). Event 1 (Anal01) has been set up to read database values at
the begin-of-run. It starts by reading data from the first database file defined by the DatabaseFile run control.
Second and subsequent files are defined by either the DatabaseFile control settings or by the FILELIST
database command. The FILELIST commands override the settings of the DatabaseFile control.

Data values can be read into either system blocks or other common blocks. System block variables are
entered using the EGEOM keyword. An Excel file is used to define the structure of the system blocks. This
variable mana gement spreadsheet is used to define variable names, types, and locations. It also generates
the FORTRAN code that defines the database internal structure. The database for the Proton Radiography
experiment uses this management tool to provide arrays called IPRM, IIPRM, and RPRM for
compatibility with legacy Q programs, though it is not necessary to use them to have database variables.
These arrays have been equivalenced to the appropriate system blocks. The Excel file also generates
LABEL commands for system block variables. Auto logging of database variables can be turned on at this
point.

The structure a database file is simple. It consists of command lines and data lines. Command lines start in
column 1. Data lines have a blank in column 1. Anything after an ! is a comment. Command lines have a
keyword, sometimes a sub-keyword, then start and count numbers. Data lines can have one or more
numbers on them separated by delimiters (usually blanks). Data lines immediately follow the appropriate
command line. The default values depend on the variable. The only required keyword is RUN . This
indicates which runs the following data applies too. Every file must have at least one RUN command line
as the first command in the file. If two or more entries defined the same variable, the last definition is used.
THE ORDER OF APPEARANCE MATTERS. Lines may only be 80 characters wide.

An ASCII log of the command and data lines used is written. When in DAQ mode, this file should be
saved with the data to record the values actually read. It is called RUnnnn.log and is written to the
PCDAQ directory.

If you are using the database to set values in the DAQ hardware (for example, pedestals), be sure to put the
hardware setting code after the uBegOfRunCall to ANAL01 (Analysis Hooks). A good place for this is
QRU2 .

Database Example File

An example database file:
!
! Example database file that shows how to control
! the TDC gains over a range of runs.
! This example shows two CAMAC TDCs in slots 3 and
! 4 of crate 2. It is assumed they are FERA modules
! with assigned VSN (Virtual Station Numbers).
! [Note: The interpretation of these three identification
! numbers is actually up to the user.
! This is simply one implementation.]
!
! File: PCDAQHelp.doc
! Author: Gary Hogan
! Date: Aug. 22, 1996
! Revision History:
!

HelpManualV4.doc LAUR-98-4531

Page 68 of 86, 1/13/99

!-------------------------------
! Default definition.
! This defines data from runs 0 to 0 which
! the program interprets as meaning all runs.
! Following data for specific runs will
! overwrite these values.
!
RUN 0 0 ! Following data applies to all run numbers
GAINS 2 3 5 0 16 ! Crate 2, Slot 3, VSN 5,
 ! Start sub-address 0, word count 16
 .1 .1 .1 .1 .1 .1 .1 .1
 .1 .1 .1 .1 .1 .1 .1 .1
GAINS 2 4 6 0 16 ! Crate 2, Slot 4, VSN 6,
 ! Start sub-address 0, word count 16
 .1 .1 .1 .1 .1 .1 .1 .1
 .1 .1 .1 .1 .1 .1 .1 .1
!
! New gains for runs 10-25. Only for sub addresses 0-3, Slot 3
! Note, this will overwrite default gains.
!
RUN 10 25
GAINS 2 3 5 0 4
 .098 .097 .12 .105
!
! Gains for Runs 26 to last run, slot 3
!
RUN 26 0
GAINS 2 3 5 0 4
 .095 .096 .111 .1076
!
! Gains for Runs 10 to last run, slot 4
! sub-addresses 0 -> 5
!
RUN 10 0
GAINS 2 4 6 0 6
 .085 .095 .131 .1276 .089 .075

Database Filenames

The program will search up to fifteen text files for database information. The first seven files can be defined
using the DatabaseFile run control. If you need the remaining files, you need to use the FILELIST database
command. The FILELIST command will override definitions from the DatabaseFile command. The
FILELIST command allows you to define a branching tree structure for the database based on run numbers.
Using this would allow you to read in only those files that actually pertain to the current run. This speeds
up the read-in of data.

It is suggested that you use only the first DatabaseFile run control to define the top of the database files
structure, then use the FILELIST command within the database to define subsequent file usage.

Database Filename Example

Define the top level database file using the DatabaseFile run control in your main script:

DatabaseFile=1,c:\MyDir\TopDataBaseFile.txt

Then in TopDataBaseFile.txt, begin the definition of tree structure:

Run 0 299 ! First year’s data
FILELIST 2 1 ! File #2, one file
 c:\MyDir\Year1.txt

Run 300 600 ! Second year’s data
FILELIST 2 1 ! File #2, one file
 c:\MyDir\Year2.txt

The Year1.txt and Year2.txt files can contain more FILELIST commands.

HelpManualV4.doc LAUR-98-4531

Page 69 of 86, 1/13/99

Database Keywords

10 keywords are presently recognized. Alphabetic case is not significant.

Table 4, Database Keywords

DIPS Table to convert time differences into wire numbers.
DRIFT Time average to distance tables.

EGEOM
Experimental geometry and other constants. Uses sub-keywords
defined in the variable management spreadsheet. Data goes into the
system blocks.

FILELIST Define filename lists for input.
GAINS Defines DAQ hardware to physics conversion.
LLIM Lower limit for acceptable DAQ hardware data.
MAP Defines DAQ hardware (ex., CAMAC) to detector mapping.
PEDS Offsets to DAQ hardware data.
RUN Defines run number range for following data.
ULIM Upper limit for acceptable DAQ hardware data.

Keywords must be spelled out completely. No shortcuts are allowed.

The DIPS and DRIFT are specific keywords for Proton Radiography. Looking at the code for these (see
CAL_RD.FOR and CAL_CONST.FI) will show you how to add new keywords to the database.

When you need to add new variables to the database, you would normally place them in the system
blocks . This would mean updating the variable management spreadsheet with your new variable, then
recompiling the DATABASE.DLL and USERROUTINES.DLL. If the new data will not easily fit into
the system blocks, you will need to define new keywords to read in the data into new common blocks.

RUN

RUN is used to control which lines of the file are processed

Syntax:

RUN firstrun lastrun

The RUN keyword is followed on the same line by two numbers which are read as decimal (base 10).
These are the minimum and maximum run numbers for which the following data applies (until the next
RUN card). As a special case, 0 is satisfied by any run number. A RUN card should be first line in the file
(except for comments).

RUN Examples

RUN 1567 1568 ! The following data applies to runs 1567 to 1568

RUN 1550 0 ! The following data applies to run 1550
 ! and all runs thereafter.

RUN 0 0 ! The following data applies to all runs

MAP

MAP data is detector channel information. That is, it maps a given hardware channel (given by the
information on the keyword line) into a physical detector channel.

Syntax:

MAP crate slot VSN first-channel number-of-channels
 value value … [Values in hexadecimal]

Crate, slot, and VSN are hardware identification numbers for a particular module. First-channel is the
starting sub-address within the given module. Number-of-channels is a word count. Note, if Crate or Slot

HelpManualV4.doc LAUR-98-4531

Page 70 of 86, 1/13/99

numbers are proceeded by $, they are treated as hexadecimal numbers. Data values are assumed to be
hexadecimal (no $ needed).

For Proton Radiography, the three hardware numbers are taken to refer to CAMAC crate number, slot
number in the crate, and the FERA Virtual Station Number. For other experiments, the user may interpret
them as they wish. What is important is that these three numbers are used to link the MAP information to
information from the GAINS , PEDS , ULIM , and LLIM keywords. All three numbers must match for the
proper linkage to be made.

The values following the MAP keyword defined how a specific DAQ hardware channel is to be mapped to a
physical device. The interpretation of this value is left to the user. An example given below is from the
early Proton Radiography experiments.

MAP Value

MAP values are 32-bit integer words that describe how to associate a given DAQ hardware channel to a
physical device. In normal use, certain bits are designated as flags, other bits are detector numbers. Masks
and shift counts used to decode the values are defined in ANA_CONST.FI. A value of -1 usually means a
DAQ hardware channel is not connected to anything

An example of how to use the MAP values is given below from the Proton Radiography experiment.

bits 31-24: detector number. Defined values (hex):
01 = Scintillator TDC
02 = Scintillator ADC
03 = Signal (latch) TDC
04 = Signal (latch) ADC
21 = Chamber TDC - U
22 = Chamber TDC - D

bit 15: bad channel
0 = normal value
1 = data from this channel should be ignored

bits 14-00: element number -- wire or scintillator number. Possible values are 0 to
7FFF (0 to 32767 decimal)

MAP Examples

Example of single values:

Up-end of delay line chamber 4 = 22000004 (base 16)

Down-end of delay line chamber 5 = 21000005

Scintillator 2 TDC = 01000002

Mapping Crate 3, slot 5, VSN 8 into ADCs for scintillators 11 → 25. CAMAC sub-address 5 is
undefined.

MAP 3 5 8 0 16
 0200000B 0200000C 0200000D 0200000E ! scintillators 11 → 14
 0200000F ! scintillator 15
 FFFFFFFF ! sub-address 5 is not used
 02000010 02000011 ! scintillators 16 → 17
 02000012 02000013 02000014 02000015 ! scintillators 18 → 21
 02000016 02000017 02000018 02000019 ! scintillators 22 → 25

MAP Programming Usage Notes

Programming notes from ANA_CONST.FI where the following arrays and parameters are defined.

Interpretation of the channel map:

There are four INTEGER*4 mapping arrays,
MAP_10(-3:15,0:MAX_MAP_10) for 16-channel modules
MAP_20(-3:31,0:MAX_MAP_20) for 32-channel modules
MAP_60(-3:95,0:MAX_MAP_60) for 96-channel modules

HelpManualV4.doc LAUR-98-4531

Page 71 of 86, 1/13/99

MAP_80(-3:127,0:MAX_MAP_80) for 128-channel modules

N_MAP_xx is the last row actually filled with mapping data in MAP_xx (xx = 10, 20, 60,
or 80 [the number of words in hexadecimal]). Row 0 never contains valid mapping data
and should be MAP_xx(*,0)=-1. The Nth row (where N <= N_MAP_xx <= MAX_MAP_xx)of MAP_xx
contains the mapping for the hardware module given by:

MAP_xx(-3,N) = FERA id (VSN)
MAP_xx(-2,N) = Camac Slot
MAP_xx(-1,N) = Camac Crate

The set of these three values is unique among all rows in MAP_xx. Then MAP_xx(0,N),
MAP_xx(1,N), MAP_xx(2,N), ..., are the detector channels connected to module sub-
address channels 0, 1, 2, ... for the given crate and slot. MAP_xx(y,N) = -1 means
that no mapping information has been entered for channel y; otherwise, the value of
MAP_xx(y,N) is interpreted as follows:

bits 31-24: detector number. Defined values (hex):
01 = Scintillator TDC
02 = Scintillator ADC
03 = Signal (latch) TDC
04 = Signal (latch) ADC
21 = Chamber TDC - U
22 = Chamber TDC - D

bit 15: bad channel
0 = normal value
1 = data from this channel should be ignored

bits 14-00: element number -- wire or scintillator number. Possible values are 0 to
7FFF (0 to 32767 decimal)

Example of single values:

Up-end of delay line chamber 4 = 22000004 (base 16)

Down-end of delay line chamber 5 = 21000005

Scintillator 2 TDC = 01000002

There are three REAL*4 arrays of pedestal values (there are no 128-channel ADC's or
TDC's):

PED_10(0:15,0:MAX_MAP_10) for 16-channel modules
PED_20(0:31,0:MAX_MAP_20) for 32-channel modules
PED_60(0:95,0:MAX_MAP_60) for 96-channel modules

Three REAL*4 arrays of gain values,
GAN_10(0:15,0:MAX_MAP_10) for 16-channel modules
GAN_20(0:31,0:MAX_MAP_20) for 32-channel modules
GAN_60(0:95,0:MAX_MAP_60) for 96-channel modules

Three INTEGER*2 arrays of lower window limits,
LM1_10(0:15,0:MAX_MAP_10) for 16-channel modules
LM1_20(0:31,0:MAX_MAP_20) for 32-channel modules
LM1_60(0:95,0:MAX_MAP_60) for 96-channel modules

Three INTEGER*2 arrays of upper window limits,
LM2_10(0:15,0:MAX_MAP_10) for 16-channel modules
LM2_20(0:31,0:MAX_MAP_20) for 32-channel modules
LM2_60(0:95,0:MAX_MAP_60) for 96-channel modules

These arrays are all indexed by Crate, Slot, and FERA VSN the same way as MAP_xx, but
since Crate, Slot, and FERA VSN are actually stored only in the MAP_xx array, the
placing of values into MAP_xx, PED_xx, GAN_xx, LM1_xx, and LM2_xx must be coordinated
so that each Crate, Slot, and FERA VSN refers to the same row in all five arrays.

Examples
1. If Crate 5, Slot 4, VSN 8, sub-address 7 has its map value in MAP_10(7,19), then

the corresponding pedestal is in PED_10(7,19) and gain is in GAN_10(7,19).
2. If you need to look up the lower limits for Crate 3, slot 5, VSN 9, you first loop

from 1 to N_MAP_10 in MAP_10 looking for the these hardware identifier numbers. If
you find a match at row 17, then the lower limits are in LM1_10(x,17).

Default values are:

Table 5, Default Database Values for MAP, etc.

HelpManualV4.doc LAUR-98-4531

Page 72 of 86, 1/13/99

item default variable
detector-channel map -1 MAP_xx

pedestal 0. PED_xx
gain 1. GAN_xx

lower-limit 0 LM1_xx
upper-limit 32767 LM2_xx

PEDS

PEDS defines the pedestal zero offset for ADC's or the equal time offset for TDC's.

Syntax:

PEDS crate slot VSN first-channel number-of-channels
 value value …

See MAP for details on keyword values. If the number-of-channels is negative, only the first value is
needed. It will be replicated for all the entries.

PEDS are stored as REAL*4 (F format--but you can omit the decimal point if there is no fraction). Default
value is zero. A * for a value means do not change the value for that channel.

GAINS

GAINS define the multiplicitive conversion factors to convert ADC and TDC information into physics
quantities.

Syntax:

GAINS crate slot VSN first-channel number-of-channels
 value value …

See MAP for details on keyword values. If the number-of-channels is negative, only the first value is
needed. It will be replicated for all the entries.

GAINS are stored as REAL*4 (F format--but you can omit the decimal point if there is no fraction). Default
value is one. A * for a value means do not change the value for that channel.

LLIM

These constants are currently used for sparcification such as for LeCroy ADCs. LLIM is the lower bound,
ULIM is the upper bound.

Syntax:

LLIM crate slot VSN first-channel number-of-channels
 value value …

See MAP for details on keyword values. If the number-of-channels is negative, only the first value is
needed. It will be replicated for all the entries.

LLIM values are stored as 16-bit integers. Default value is zero. A * for a value means do not change the
value for that channel.

ULIM

These constants are currently used for sparcification such as for LeCroy ADCs. LLIM is the lower bound,
ULIM is the upper bound.

Syntax:

ULIM crate slot VSN first-channel number-of-channels

HelpManualV4.doc LAUR-98-4531

Page 73 of 86, 1/13/99

 value value …

See MAP for details on keyword values. If the number-of-channels is negative, only the first value is
needed. It will be replicated for all the entries.

ULIM values are stored as 16-bit integers. Default value is zero. A * for a value means do not change the
value for that channel.

EGEOM

EGEOM defines Experimental GEOMetry variables.

Syntax:

EGEOM sub-keyword n1 n2
 value value …

The default values for n1 and n2 is 1. For scalar quantities the numbers have no meaning. Otherwise, n1 is
the array starting index, and n2 is the number of values given. 2-D and 3D arrays should be treated as 1-D
arrays in the geometry file. Values may be integer or real, depending on the sub-keyword. The * place
holder has no meaning. Assuming you have used the EXCEL variable management tool, the sub-keyword
is the same as the variable name. The data entered here will reside in the appropriate system block . This is
the only keyword that interacts with the system blocks. All other database keywords put their data in other
common blocks. Sub-keywords must be spelled out completely. For the Proton Radiography experiments,
most of the time this keyword is used to fill variables that have been assigned to the IPRM, IIPRM, or
RPRM arrays. Negative counts for n2 do not work with this keyword.

The structure of the EGEOM sub-keywords are defined in the block data file EXPER_GEOM.FOR which
is generated by the variable management spreadsheet.

EGEOM Examples

Example of how to fill database values. Variable names are made up just for this example.

Filling scalar variables Zposition and MaxEnergy

EGEOM Zposition 1 1
 199
EGEOM MaxEnergy ! n1 and n2 are optional for scalars
 52.8

Filling an array WirePos(10).

EGEOM WirePos 1 10
 1 2 3 4 5 6 7 8 9 10

Change WirePos(7)

EGEOM WirePos 7 1
 7.1

Change WirePos(4) and (5)

EGEOM WirePos 4 2
 4.1 5.1

Filling array Gtherm(2,3)

EGEOM Gtherm 1 6
 5 7 8 9 3.4 9.8

Changing Gtherm(2,1)

EGEOM Gthrem 3 1
 8.1

Changing Gtherm (1,3) and (2,3)

EGEOM Gtherm 5 2
 3.5 9.9

HelpManualV4.doc LAUR-98-4531

Page 74 of 86, 1/13/99

FILELIST

FILELIST is used to redefine the list of input files using the run number as the key

Syntax:
FILELIST First-element Number-of-elements
 filename
 filename
 …

Where:

 First-element : Location in file list to substitute first entry

 Number-of-elements : Number of entries that follow

Each filename is on a separate line. Remember to indent one space at the beginning of the line. Filename
lengths are limited to 79 characters (the length of the input line). File names are substituted into the
database file list. If that entry in the file list has already been read or is the currently opened file, the
substitution has no effect.

FILELIST example

Assume you want to have the following branch structure to the database:

 TopFile.txt
 All Runs
 | |
 |------------| |--------------|
 | |
 Year1.txt Year2.txt
 Runs 1-299 Runs 300-700
 | |
 |--------| |----------|
 | |
 TDCPart1.txt TDCPart2.txt
 ADCPart1.txt ADCPart2.txt
 Runs 300-399 Runs 400-700

For various run numbers, you would read in

Run Number 50 310 450 900

File #1 TopFile.txt TopFile.txt TopFile.txt TopFile.txt

File #2 Year1.txt Year2.txt Year2.txt

File #3 TDCPart1.txt TDCPart2.txt

File #4 ADCPart1.txt ADCPart2.txt

Table 6, FileList Example

Then you should have the following FILELIST commands in various files:

METHOD 1. Structure defined throughout files

Define the top level database file using the DatabaseFile run control in your main script:

DatabaseFile=1,c:\MyDir\TopFile.txt

Somewhere in TopFile.txt you would have:

RUN 1 299
FILELIST 2 1 ! Define the second database file
 c:\MyDir\YEAR1.TXT

RUN 300 700
FILELIST 2 1 ! Define the second database file
 c:\MyDir\YEAR2.TXT

HelpManualV4.doc LAUR-98-4531

Page 75 of 86, 1/13/99

and in YEAR2.TXT, you would have:

RUN 300 399
FILELIST 3 2 ! Define the third and fourth database files
 c:\MyDir\TDCPart1.txt
 c:\MyDir\ADCPart1.txt

RUN 400 700
FILELIST 3 2
 c:\MyDir\TDCPart2.txt
 c:\MyDir\ADCPart2.txt

METHOD 2. Structure defined in one place

Define the top level database file using the DatabaseFile run control in your main script :

DatabaseFile=1,c:\MyDir\TopFile.txt

Somewhere in TopFile.txt you would have:

RUN 1 299
FILELIST 2 1 ! Define the second database file
 c:\MyDir\YEAR1.TXT

! Define the second through fourth database files
RUN 300 399
FILELIST 2 3
 c:\MyDir\YEAR2.TXT
 c:\MyDir\TDCPart1.txt
 c:\MyDir\ADCPart1.txt

RUN 400 700
FILELIST 2 3
 c:\MyDir\YEAR2.TXT
 c:\MyDir\TDCPart2.txt
 c:\MyDir\ADCPart2.txt

DIPS

This defines lookup tables for converting delay line differences into wire numbers. It is specific to the early
Proton Radiography experiments.

Syntax:

DIPS chamber first-channel number-of-channels
 value value …

DIPS values are stored as 16-bit integers. Default value is zero (meaning undefined wire). Variables are
defined as a separate common block in CAL_CONST.FI

DRIFT

This defines lookup tables for converting delay line averages into drift distances. It is specific to the early
Proton Radiography experiments.

Syntax:

Drift chamber wire-number first-channel number-of-channels
 value value …

DRIFT values are stored as 16-bit integers. Default value is zero. If wire-number is zero, the data is
assumed to be for all wires and stored in DriftConstants instead of DriftWireConstants. Variables are
defined as a separate common block in CAL_CONST.FI

Database Syntax

Items on a line are separated by one or more spaces, tabs, or commas, or some combination thereof. Note
this means you CANNOT use double commas to denote omission of an item. Omitted data values can be

HelpManualV4.doc LAUR-98-4531

Page 76 of 86, 1/13/99

indicated by entering an asterisk (*) as the item in the corresponding position. The * placeholder has no
meaning for the geometry values (EGEOM).

Keywords MUST start in the first column; data must NOT start in the first column. Anything after an
exclamation point is ignored. This is for inserting comments. Lines may only be 80 columns wide.

Variable ManagementThere is an EXCEL spreadsheet available to help with managing variables in the
system blocks . There are currently three system blocks defined for PCDAQ. They are a 16-bit integer array,
a 32-bit integer array, and a 32-bit floating point array. Different parts of these arrays are used for a variety of
purposes: I/O buffers, database values, and analysis results. Not only are there a large number of type and
equivalence statements that must be written up, but also LABEL and database structures need to be defined
in order to get the most out system block usage. The variable management spreadsheet simplifies this by
providing a single spreadsheet in which the user defines how the array usage in the system blocks is to be
parsed out. Once the definition is complete, a macro in the spreadsheet generates the appropriate
FORTRAN code and LABEL commands.

The spreadsheet currently used for variable management is called PARM2.XLS and it sits in the Database
directory. [Tip: create an icon or shortcut to this file.] It produces three files: DATABASELABEL.SCR,
EGEOM.FI, and EXPER_GEOM.FOR. DATABASELABEL.SCR is script file defining the LABEL
commands describing the system blocks. EGEOM.FI is a FORTRAN include file that has the type and
equivalence statements for the system blocks. EXPER_GEOM.FOR is a FORTRAN block data program
that defines the structure of the EGEOM keyword portion of the database. These files are generated when the
user clicks on GENERATE under the Tools menu. Once the files are generated, the user needs to recompile
the Database and UserRoutines DLLs and then copy the DLLs to the system directory.

To define a new variable in the system block, you first insert a new row in the spreadsheet where you want
the variable definition to be placed. Then you enter the following information about the variable:

Name: This is the variable’s FORTRAN name. It should correspond to the FORTRAN naming
conventions. The type of the variable is derived from the system block in which it resides. This
name is the sub-keyword that should be use on the EGEOM line for setting the value in the
database. The name may be up to 20 characters long. Avoid using the characters “_^@” as they
are special formatting controls in the plotting package

Dim1, Dim2, Dim3: The dimension(s) of the variable. If the dimension is 1, that dimension is
ignored. Thus a simple scalar variable would be DIM1 = 1, DIM2 = 1, DIM3 = 1. A 1-D array
of size n would be DIM1 = n, DIM2 = 1, DIM3 = 1. A 2-D array of n x m would be DIM1 = n,
DIM2 = m, DIM3 = 1. Arrays subscripts start with 1.

Array: A 1-D array to equivalence this variable too. Variable equivalencies can be nested as deep as
FORTRAN allows, that is, you can equivalence a variable to an array that is equivalenced to an
array that is equivalenced to an array, etc. The only condition is that you must ultimately reach
one of the system block arrays (IntegerData, SingleData, or LongData).

Index: Where in the array the variable is to be equivalenced.

Event: The event number the variable should be associated with on the LABEL command.

Log: Flag that the auto-logging flag should be set on the Label command. Logging is set if this is 1,
not set if it is 0.

Form: The format command to use on the label command.

Comments: Comment describing the variable. This will also be used as the name on the Label
command and will appear on the Data Screen window. So try to keep this short. Only the first
50 characters are saved in the EXPER_GEOM.FOR data structure statements.

Once you have added or changed the variables you want, generate new versions of the system block files as
described above.

The LABEL command generated has as it’s index the location of the variable in the system block. This
makes this line a good starting point for defining a histogram for a variable.

HelpManualV4.doc LAUR-98-4531

Page 77 of 86, 1/13/99

Database Header Files

There are two header files, EGEOM.HEAD and EXPER_GEOM.HEAD that the management program uses
when generating EGEOM.FI and EXPER-GEOM.FOR. These files contain the code that goes before the
lines generated by the spreadsheet itself. The line in EGEOM.FI that defines the maximum number of
variables will be changed by the spreadsheet as needed.

Using the Database in Other Programs.

The database programs are in a separate DLL. With only minor modifications, the code can be used in
other programs. Please see the author for details or look in ANAL01. Important routines are:

CALL SET_CONST_UNITS(data-in, log-out)
where log-out is the unit number for writing the log file (defaults to 6) and data-in is the unit
number for reading the constants file (default 33). Open the log file explicitly if you want it to
have a nice name.

status = SET_CONST_FILES(file-list, number-of-files)
file-list is a character ARRAY containing the file names. The files are read in the order of the
array elements. Function is I*4. Value = 0 if list is okay.

ISTAT=MEGA_CONST(run-number)
Reads the data files and fills the constants arrays appropriately for the run-number. It reads the
files only if the run-number has changed since it was last called (exceptions: (1) using a negative
run-number will always cause the file to be read; (2) calling SET_CONST_FILES will force
reloading of the constants on the next call MEGA_CONST, regardless of the run number).
ISTAT=1,2,3 for warnings, errors, or both. Search the log file for *W* and *E* to find them.
Otherwise, ISTAT=0

EGEOM.FI and EXPER_GEOM.FOR are created by the variable management spreadsheet. If you are
going to use this DLL in another program, you may need to change the header files
EGEOM.HEAD and EXPER_GEOM.HEAD to reflect you own common block usage.
PCDAQBuffersImport.inc and PCDAQBuffers.inc would also need to be replaced. (These define
the system block commons).

DATABASE.FI. An include file that brings together the various include files in the database except
for the system blocks. It also contains the compiler attribute statements needed to properly link
to the DLL common blocks.

DATABASEIMPORT.FI Defines the interface to the database routines.

PCDAQBuffers.inc and PCDAQBuffersimport.inc are needed because that is where the system block
common blocks are defined. If you were writing a new program, you would presumably move
these common blocks elsewhere.

Database File Updates

Database files can be changed with a text editor (ex., Notepad) or by appending files to existing files. One
convenient method is to define an icon or shortcut symbol to be the Notepad editor with the database file as
the input file.

Writing Database Files

To make writing flat files a relatively painless process, subroutines with names of the form CAPND_* are
available to create and format data files. At this time, however, there seems to be a problem with using
them within other DLLs.

Run Numbers for Output

A RUN card should be the first line in the file (except for comments). In setting "firstrun" and "lastrun",
consider that this file may be designed to be appended to the END of another flat file. Normally, "firstrun"

HelpManualV4.doc LAUR-98-4531

Page 78 of 86, 1/13/99

should be the run number of the data from which the constants were determined. If it is set smaller than
this, you must be confident that the results apply to prior runs as well, and be certain that it will not
overwrite values accurately known for those runs. If the constants are current, "lastrun" must be set to 0,
since you cannot anticipate for how many runs they will remain valid. If, however, they have been
superseded by current conditions (e.g., they are tardy in production, or are corrections to old values), then
an accurate "lastrun" must be supplied to avoid their overwriting the current values when the flat file is
read.

Database Output Subroutines

1. CAPND_CREATE(lun, filename) -- creates the file
where lun = I*4 FORTRAN unit number (you choose to avoid conflicts)
filename = CHARACTER name for the file
(by default, this file is created in your default directory;
default name is MEGA_CAPND, default extension is .TXT)

2. CAPND_ALL (firstrun, lastrun, lun, keyword-list, list-length)
 Master dump routine. Can be use to dump the entire contents of the database or all the
data under selected keywords.
 Firstrun = I*4, starting run number to use in RUN keyword
 Lastrun = I*4, last run number to use in RUN keyword
 lun = I*4, logical unit number of output file. File must already be open.
 Keyword-list = Character array giving list of keywords to dump.
 Case not important. A value of 'ALL' will result in
 all keywords being dumped. For this option,
 list-length must be 1.
 List-length = I*4, Number of items in keyword list.

3. CAPND_RUN(firstrun,lastrun)
writes RUN keyword line
firstrun = I*4 run number, first run for which following is valid
lastrun = last run for which following is valid (normally, this will not be known, so 0 is used
-- meaning that the data applies to ALL runs following firstrun until it is overwritten by a
later entry)

4. CAPND_MAP(crate, slot, VSN, firstchan, numberchan) -- writes MAP keyword line
CAPND_PEDS(crate, slot, VSN, firstchan, numberchan) -- writes PEDS keyword line
CAPND_GAINS(crate, slot, VSN, firstchan, numberchan)-- writes GAINS keyword line
CAPND_LLIM(crate, slot, VSN, firstchan, numberchan) -- writes LLIM keyword line
CAPND_ULIM(crate, slot, VSN, firstchan, numberchan) -- writes ULIM keyword line
 crate: CAMAC crate
 slot = slot in hardware crate
 VSN = virtual station number
 firstchan = module channel number corresponding to first of the
 following data values (first channel in the MODULE
 is always numbered 0)
 numberchan = number of data values following.

Note, these routines only write the keyword. To write the data, use the write routines below.

5. CAPND_DIPS (chamber, first-wire, number-of-wires)
Writes keyword line only. To write the data, use the write routines below.

6. CAPND_DRIFT (chamber, wire-number, first-value, number-of-values)
Writes keyword line only. To write the data, use the write routines below.

7. CAPND_EGEOM(variable-list, number-of-variables)
Writes EGEOM keyword and data.
variable-list is a CHARACTER*15 list of sub-keywords giving which variables to write out.
Number-of-variables is an I*4 word giving the length of the variable list.
If number-of-variables = 1 and variable-list(1) = "ALL", then all the variables are written out.

HelpManualV4.doc LAUR-98-4531

Page 79 of 86, 1/13/99

Variable names are case independent. Values of variables come from common block. If the
variable is an array, the entire array is written out.

8. CAPND_FILELIST - Write out current input file list. No parameters.

9. CAPND_R4DATA(array, number) -- writes formatted lines of REAL*4 data
CAPND_I4DATA(array, number) -- writes formatted lines of INTEGER*4 data
CAPND_Z4DATA(array, number) -- writes formatted lines of INTEGER*4 data in hex format
CAPND_I2DATA(array, number) -- writes formatted lines of INTEGER*2 data
 array = (R*4, I*4, or I*2, as appropriate) array containing the data to be written
 number = number of values to be written out
 SPECIAL CASE: to get the asterisk placeholder, put the following values
 in the corresponding array element:
 -1.E30 for CAPND_R4DATA
 -32767 for CAPND_I2DATA (='8001'X)
 -2147483647 for CAPND_I4DATA (='8000001'X)

Database Output Example

As a simple example, suppose you have determined TDC offsets and slopes for two 16-channel modules
with crates ID(1) and ID(2), slots GA(1) and GA(2), and placed them in the first two rows of REAL arrays
OFF(16,*) and SLO(16,*), and that these values were determined with data from run number NRUN.
Then the following code will produce a file DatabaseOutput.TXT suitable for appending to the database:

 INCLUDE ‘PCDAQBUFFERS.INC’
 INCLUDE ‘PCDAQBUFFERSIMPORT.INC’
 INCLUDE ‘DATABASE.FI’
 INCLUDE ‘DATABASEIMPORT.FI’
 …

 CALL CAPND_CREATE(35,'DatabaseOutput.TXT')
 CALL CAPND_RUN(NRUN,0)
 DO I=1,2
 CALL CAPND_PEDS(ID(I),GA(I),0,0,16)
 CALL CAPND_R4DATA(OFF(1,I),16)
 CALL CAPND_GAINS(ID(I),GA(I),0,0,16)
 CALL CAPND_R4DATA(SLO(1,I),16)
 END DO

HelpManualV4.doc LAUR-98-4531

Page 80 of 86, 1/13/99

 Analysis Hooks

The control program calls a number of user definable programs. They are defined in the FORTRAN DLL
library “UserRoutines” and in the vbAnalxx modules in the DAQControl project. The user can place code
in either or both routines. The Visual Basic version is called before the Fortran version. Empty versions of
the programs are provided. The central program(s) that the user needs to provide is the event analysis
routine ANALnn, where nn is the event number. For example, ANAL06 is the analysis program for event
6. The current range of allowed events is 1 to 24. The calling procedure for the analysis program is:

ReturnCode = ANALnn (CallType)

The analysis routine is called at a number of points in the control program. The value of CallType tells the
user what is going on. Parameters defining the call types are provided in the include file
PCDAQBuffers.inc.

The call type parameters are:

uNewCall :: Data in input buffer has changed (new CAMAC read done). Buffer pointers should be
reset, then event analysis done. Both UserEnable and EventEnable must be set for the call to
occur. Called if hardware or software trigger occurs.

uRecursiveCall :: Program is being called for second (or more) times for a given hardware input
event. Do appropriate event analysis. Both UserEnable and EventEnable must be set for the call
to occur. Called if recursive request or software trigger occurs.

uBegOfRunCall :: Analysis is being called at start of run. Use to initialize program or define data
to dump to tape at start of run. No data has been read at this point. Only EventEenable must be
set for call to occur. Taping of labeled variables for event will occur after all events are called if
uAbortOuput is not set.

uEndOfRunCall :: Analysis is being called at end of run. Use to define data to be dumped to tape at
end of run. Only EventEnable must be set for call to occur. Taping of labeled variables for event
will occur after all events are called if uAbortOuput is not set.

uClearCall :: Garbage clean up at end of each analysis loop. Called after automatic histogramming
and taping are done. Note, variables nulled out here will not show up on the data screen. Both
UserEnable and EventEnable must be set for call to occur. Called after every uNewCall or
uRecursiveCall is made or if analysis is skipped due to May Process test.

uGetTrigger :: Do CAMAC input code. This will usually be a set of FCNA or GPIB calls. Data
should go into appropriate system blocks as defined by CAMACnn label commands. Pointers
to the system blocks are in the common block /EventDefinitionCommon/ located near the end of
PCDAQBuffers.inc. The user is responsible for setting the event size array(s) so the control
program can properly output the raw data. This is the equivalent of the “QAL” code for an event
in the Q system.

In the VB analysis code, used to check for an Active X Sever Trigger or check for a completed
asynchronous read. Change return result to 0 if trigger found. Specifically, setting uAbortOutput
means that a trigger was not found. If you want to kill output when a trigger is found, use the
Fortran Analnn function to set uAbortOutput.

uGetMonteCarlo :: Generate a Monte Carlo event. Only the Fortran version is called.

uBegOfSessionCall :: Called just before hardware connections are made. For instance, connections
to other ActiveX servers by VB programs can go here (though uBegofBatchCall may be a better
place).

uEndOfSessionCall :: Called just after hardware connections are broken. For instance,
disconnections to other ActiveX servers by VB programs must go here if not done in
uEndofBatchCall.

uBegOfBatchCall :: Called at the beginning of a group of runs. For live data, the start of data taking
when rollover is enabled. A good place to verify connection to Active X servers, and find out

HelpManualV4.doc LAUR-98-4531

Page 81 of 86, 1/13/99

what is actually connected. Also possibly, to freeze controls on servers (for example, if they are
using GPIB). Clear out variables that accumulate over multiple runs. Called only once when in
DAQ and rollover mode.

uEndOfBatchCall :: The end of a batch of runs. Put analysis of multi-run data here.

uBegOfSessionWrite :: User write is being called at start of session. Not implemented.

uEndOfSessionWrite :: User write is being called at end of session. Not implemented.

uBegOfBatchWrite :: User write is being called at start of batch. Not implemented.

uEndOfBatchWrite ::User write is being called at end of batch. Not implemented.

uBegOfRunWrite :: User write is being called at start of run. Not implemented.

uEndOfRunWrite :: User write is being called at end of run. Not implemented.

uDataWrite :: Fortran: User write is being called at end of each event analysis. Not implemented.
VB: Write data to Active X Servers in replay mode at the end each event analysis

uBegOfSessionRead :: User Read is being called at start of session. Not implemented.

uEndOfSessionRead :: User Read is being called at end of session. Not implemented.

uBegOfBatchRead :: User Read is being called at start of batch. Not implemented.

uEndOfBatchRead :: User Read is being called at end of batch. Not implemented.

uBegOfRunRead :: User Read is being called at start of run. Not implemented.

uEndOfRunRead :: User Read is being called at end of run. Not implemented.

uDataRead :: Fortran: User Read is being called at start of analysis. Not implemented. VB: Get data
from Active X Servers. DAQ or Monte Carlo modes only?

The value of ReturnCode tells the control program what to do next. This return code is a set of control bits
and can be combined. Bit definitions are:

uRecursiveRequest :: Requests that this program be called again.

uNoSubTriggers :: Do not issue software triggers that depend on this event as the trigger source.

uAbortOutput :: Do not tape output from this event. Histogram fill status is not affected.

uAbortHistograms :: Do not fill histograms from this event. “Taping” status is not affected.

uAbortAll :: If doing analysis (uNewCall, uRecursiveCall, or uEndOfRunCall), all further work on
this trigger is aborted, including histogram fills, taping, software triggers, and outstanding
recursive requests. The program then waits for the next hardware trigger. If it happens on the
CAMAC read call (uGetTrigger) or the begin-of-run call (uBegOfRunCall), something has gone
badly wrong and the run is stopped immediately.

uSuspendRun :: Suspend run request.

uAbortHistograms :: Do not fill histograms from event

uAbortRun :: Abort the run. This brings the run to an immediate halt.

uErrorMessage :: Raise an error message. In Visual Basic code, use the variables AnalErrorNumber
and AnalErrorString to store your error message. In Fortran, use ErrNumber and ErrString.

uEndRun :: Cause the run to end normally, i.e., with calls to end-of-run routines.

uRolloverRun :: Cause the run to end normally, i.e., with calls to end-of-run routines. Then
immediately start a new run without user intervention.

Other routines are provided. They have the calling procedure:

ReturnCode = UserRoutine(EventEnableFlag)

HelpManualV4.doc LAUR-98-4531

Page 82 of 86, 1/13/99

EventEnableFlag is an array containing the state of the Event Enable Flags. If EventEnableFlag(n) =
vbChecked, then event n is enabled, otherwise not. Users are on their honor not to change the state of this
variable. If the return code is zero, an error is assumed and the run terminates. The user defined routines are
called as follows. User routines are in capital letters:

Initialization (“qstart”):

ReturnCode = ANALnn(uBegOfSessionCall).
Setup CAMAC.
Test event module location.
Check thatdatabase files listed on control form exist.
ReturnCode = USERSTART().

Run Start:

Null out system blocks.
Clear Histograms.
Check that database files listed on control form exist.
ReturnCode = ANALnn(uBegOfBatchCall). ANAL01 is the read.
Reset CAMAC (ensure event module not enabled).
Open output file and dump begin of run information.
ReturnCode = XSRUN(EventEnable) or QSRUN (EventEnable).
ReturnCode = QRU1(EventEnable).
Enable event module.
Automatic histogram clear if checked.
ReturnCode = ANALnn(uBegOfRunCall). ANAL01 is the read.
Dump by-event begin-of-run information.
ReturnCode = QRU2(EventEnable).

Data Loop

Loop until run ends or suspends.
ReturnCode = ANALnn(uGetTrigger) or ANALnn(uGetMonteCarlo).
Loop until recursion done or new data.

ReturnCode = ANALnn(uDataRead)
Loop until all software triggers are done.

ReturnCode = ANALnn(uNewCall) or ANALnn(uRecursiveCall).
Simple linear transforms.
SIMPLEUSER1(input value, slope, offset)
SIMPLEUSER2(input value, slope, offset)

End software trigger loop.
ReturnCode = ANALnn(uDataWrite)
Automatic fill histograms.
Automatic output to tape.
ReturnCode = ANALnn(uClearCall) if ANALnn called in above loop.

End loop.
End loop.

Suspend Run

ReturnCode = QSPND(EventEnable).
ReturnCode = QSPND1(EventEnable).
Disable event module.
ReturnCode = QSPND2(EventEnable).
Write suspend marker to tape.

Resume Run

ReturnCode = QRESUME(EventEnable).
ReturnCode = QRESUME1(EventEnable).
Enable event module.
ReturnCode = QRESUME2(EventEnable).
Write resume marker to tape.

HelpManualV4.doc LAUR-98-4531

Page 83 of 86, 1/13/99

End Run

ReturnCode = XERUN(EventEnable) or QERUN(EventEnable).
ReturnCode = QER1(EventEnable).
Disable event module.
ReturnCode = QER2(EventEnable).
ReturnCode = ANALnn(uEndOfRunCall). Put histogram analysis code here.
ReturnCode = ANALnn(uEndOfBatchCall). Put histogram analysis code here.
Dump by-event end-of-run information.
Automatic histogram dump if checked.
Close output file.

Disconnect (“Qstop”)

Call USERSTOP ().
Disconnect from CAMAC and GPIB.
ReturnCode = ANALnn(uEndOfSessionCall).

HelpManualV4.doc LAUR-98-4531

Page 84 of 86, 1/13/99

 Output Format

Output files are binary files. Records come in two general flavors. The first is a header/descriptor record. All
headers have the same structure and size. What the entries in a given header mean varies by header type.
The second is a variable length data buffer that is described by the proceeding header record. In words, an
file might look like the following. Headers are surrounded by periods, data buffers are in italic. Headers and
buffers that are not needed are not taped. A detailed description of output header formats can be found in
OutputFormat.xls.

Output Example

.Begin of Run Header.

.Begin Definition of Labels.
.Label description.

Buffer containing label information.
.Label description.

Buffer containing label information.
…

.End Label Description.

.Begin Definition of output buffers.
.Description of Fixed output buffers starting index, type Integer.

List of pointers to integer (I*2) data, all events.
.Description of Fixed output buffers ending index, type Integer.

List of pointers to integer (I*2) data, all events.
.Description of Fixed output buffers starting index, type Single.

List of pointers to single (R*4) data, all events.
.Description of Fixed output buffers ending index, type Single.

List of pointers to single (R*4) data, all events.
.Description of Fixed output buffers starting index, type Long.

List of pointers to long (I*4) data, all events.
.Description of Fixed output buffers ending index, type Long.

List of pointers to long (I*4) data, all events.
.Description of CAMACnn output buffer, type Integer, event nn.
.Description of CAMACnn output buffer, type Single, event nn.
.Description of CAMACnn output buffer, type Long, event nn.
…

.End Definition of output buffers.

.Begin Control Flag Dump.
.Event Enable Flags.

Enable flag buffer.
.Event Source Flags.

Enable source buffer.
…

.End Control Flag Dump

.Begin Begin-Of-Run dump.
.Begin Event 1 output.
.ANAL01 results, begin of run, integer.

Integer data buffer
.ANAL01 results, begin of run, single.

Single data buffer
.ANAL01 results, begin of run, long.

Long data buffer

HelpManualV4.doc LAUR-98-4531

Page 85 of 86, 1/13/99

.End Event 1 output
….

.End Begin-Of-Run dump

.Begin Data Taking.
.Begin hardware event nn.

.Begin recursion loop 1.
.Begin Event 1 output.

.CAMAC01 data, integer
Integer data buffer
.CAMAC01 data, single
Single data buffer
.CAMAC01 data, long
Long data buffer

.ANAL01 results, integer.
Integer data buffer

.ANAL01 results, single.
Single data buffer

.ANAL01 results, long.
Long data buffer

.End Event 1 output

.Begin Event 2 output.
….
.End Event 2 output

.End recursion loop 1.

.Begin recursion loop 2.
….
.End recursion loop 2.

.End hardware event nn.
….

.Suspend run marker.

.Resume run marker.
.End data taking.

.Begin End-Of-Run dump.
.Begin Event 1 output.
.ANAL01 results, end of run, integer.

Integer data buffer
.ANAL01 results, end of run, single.

Single data buffer
.ANAL01 results, end of run, long.

Long data buffer
.End Event 1 output
….
.Event nn Final Counters.
…

.End End-Of-Run dump

.Begin Dump of Histograms.
.Begin histogram nn.
. Histogram description.

Buffer containing histogram description.
.Histogram Data.

Buffer containing histogram data (1-D or 2-D).
.Histogram Time Dates.

Buffer containing histogram dates (Time Hist, once per dump).
.Histogram Time Index.

Buffer containing index to last entry (Time Hist, once per dump).

HelpManualV4.doc LAUR-98-4531

Page 86 of 86, 1/13/99

.Histogram Time Data.
Buffer containing histogram data (Time Hist).

.End histogram nn
….

.End Histogram Dump.

.ASCII Comment.
Buffer containing ASCII comment.

.End of run header.

 Header Format

The header record has the following format:

Time Stamp (R*8). Microsoft Date, which I think is the Julian time to the nearest hundredth second
in units of days.

Record Type (I*4).

Record Sub Type (I*4).

Length of Following Buffer [bytes] (I*4).

Other information 1 (I*4).

Other information 2 (I*4).

See the spreadsheet “OutputFormat.xls” for detail definitions.

	Contents
	General Introduction
	Objectives
	Description
	Running on other computer hardware.

	Copyright
	Quick Comparison to Q

	Software Organization
	General
	Where is the Data?
	Data Blocks
	Histogram Data
	Test Package
	Control Data

	Where is the Code?
	Setting up Subdirectories
	CAMAC (FCNA)
	FileDLL
	xyPlot
	Q Test Package
	Control
	User Routines

	How do I make changes?
	Opening the Project
	FORTRAN Help Information
	Opening and Editing a File
	Compiling and Building.
	Test runs from within FORTRAN.

	Known problems
	Information Duplication
	FCNA and UserRoutines
	Speed

	DAQ Properties
	CAMAC
	Functionality
	Speed

	I/O

	Control
	Plotting
	Defining a New Plot
	Saving a Plot
	Coping a Plot to another Windows Program
	Recalling a Plot
	Multiple Plots on a Page
	Special Multiple Plots on a Page
	Graph Title Control
	Keeping Changes to Graph and Plot Definitions.
	Edit Plot Control
	Plot Appearance Controls
	Edit Plot Selection Controls

	Zoom
	Printing
	Update, Reset, and Redraw
	Text summary
	Stepping Through Plots

	Histograms
	Time
	1D
	2D
	Multiple entries
	Starting Replay from an Existing HSV File
	Adding Histograms after the Fact
	Accessing Histogram Data in ANALnn Programs
	Changing Histogram Names and Axis Labels
	Saving Multiple Histograms as a Binary File

	Data Screen
	Q Test Package
	GENERAL CONCEPTS
	Purpose of the Test Package
	Overview of Capabilities
	Connection to Event Numbers
	Connection to Histogramming
	User Information
	Test Descriptor Lines
	Test Helpful Hints

	Description of Tests
	BIT TEST
	EQUALITY TEST
	PATTERN TEST
	GATE TEST
	INDIRECT GATE TEST REFERENCE
	INDIRECT BOX TEST REFERENCE
	AND TEST
	INCLUSIVE OR TEST
	EXCLUSIVE OR TEST
	MAJORITY TEST
	USER TEST
	INDIRECT BOX TEST DEFINITION
	INDIRECT GATE TEST DEFINITION

	Sample Test Descriptor File
	PROGRAMMER INFORMATION
	Subroutines and Functions
	Test Package Data Architecture
	Example of How to Use the Test Package
	Setting up Indirect Gates and Boxes

	System Requirements
	Computer
	System
	Software
	CAMAC Interface
	Tape

	Format Standards for PC DAQ
	Format Standards
	Scripts
	Retrieving Scripts
	Run Control [RunControl]
	Labels [Labels]
	Histograms [Histograms] and [Ahistograms]
	Time Series: name /switches
	1-D and 2_D frequency plots: name /switches

	Tests [Test]
	Plots [Plot]
	Graphs [Graph]
	Comments [Comment]
	End of File [EOF]

	Database
	Database General
	Database Example File

	Database Filenames
	Database Filename Example

	Database Keywords
	RUN
	MAP
	Default values are:
	PEDS
	GAINS
	LLIM
	ULIM
	EGEOM
	FILELIST
	DIPS
	DRIFT

	Database Syntax
	Database Header Files

	Using the Database in Other Programs.
	Database File Updates
	Writing Database Files
	Run Numbers for Output
	Database Output Subroutines

	Analysis Hooks
	Output Format
	Output Example
	Header Format

